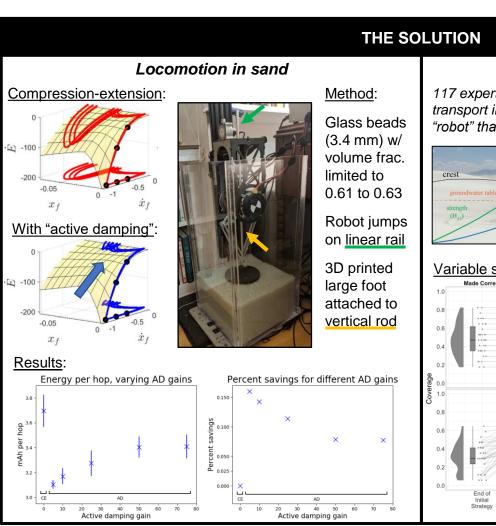


Co-Robotic Systems for GeoSciences Field Research

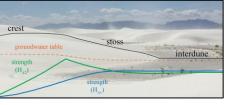
Cristina Wilson^{1,2}, Sonia Roberts¹, Thomas Shipley², Douglas Jerolmack^{1,3}, and Daniel Koditschek¹
¹University of Pennsylvania, General Robotics, Automation, Sensing and Perception; ²Temple University, Department of Psychology;
³University of Pennsylvania, Earth and Environmental Science

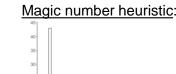


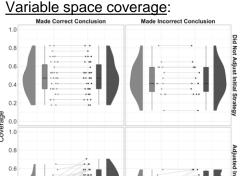
SCIENTIFIC & BROADER IMPACTS

This work anticipates a near future where humans and robots operate in coordination to explore, collect data, and test hypotheses on Earth, other planets.

Our novel approach:

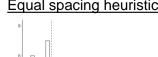

- Direct-drive robotic leg to allow precise measure of soil strength and environment-aided locomotion
- Multi robot team to help human scientists isolate and model dependence of soil strength on different environment controls
- Simulated decision making scenario to explore human sampling strategies, increase autonomy, and enhance scientific practice

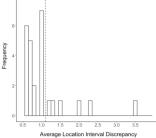



Science Exploration HRI

117 expert geoscientists evaluated hypotheses about sediment transport in simulation – collecting data along a dune using a "robot" that delivered real-time data, allowing for adjustment of


sampling strategy in response to new info.





Task Phase

