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Motivation and Objectives

Language Grounding and Dialogue Modeling

Collaborative Plan Generation 
and   Explanation  

Shared Mental Model

Model 
State and Action
Pre-condition/effect
Preference, Constraints

Plan
Partial procedure
Action sequence
Hierarchical Task Structure

Goal World

Collaborative Model  
Acquisition and Explanation

Link language and dialogue processing with the robot’s underlying 
planning system to support collaborative task planning and learning in 
a human-robot team. 

Empower robots with the ability to 
harness human knowledge and 
expertise to learn new states, actions, 
and plans. 

• No complete domain models 
for new situations

• Computationally expensive 
real-time planning



Learning new action and states 
through language interaction

Research Progress
Mental model representation and 
learning in collaborative tasks

Plan acquisition from language 
instructions

General-purpose learning technique for efficient human-agent and agent-agent 
representation alignment



Action-Effect Prediction 

Action

(squeeze-bottle)

⩗ x x ⩗

Action

(peel-carrot)
Action

(chop-carrot)
Action

(mash-carrot)
Action

(juice-carrot)

⩗xxx

Q. Gao, S. Yang,  J. Y. Chai, and L. Vanderwende. What action causes this? Towards Naïve Physical Action-Effect Prediction, ACL 2018. 



Learning Action-Effect 

Request effect descriptions 
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and skin is removed)
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(peel orange)

Effect Phrases
(peeled orange)

Web search results

Web search

Bootstrapped Prediction model

⩗ ⩗ x x
A few  examples

Dataset: 140 verb-noun pairs, 1400 effect 
descriptions, ~4200 annotated effect images,  
>60K web-searched images for training



Learning Action-Effect 

Action AP

beat eggs 0.783

pile boxes 0.766

bite apple 0.484

slice onion 0.470

Action AP
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Action Learning From Realistic 
Environments and Directives (ALFRED) 
(Shridhar et al., 2020) 
• Understand task goals
• Follow natural language instructions
• Ground language to perception
• Plan in the embodied environment

Natural Language Instructions to Actions



HiTUT (Hierarchical Tasks via Unified Transformers)
• An explainable model achieving the new state-of-the-art performance
• A de-composable platform to support more in-depth evaluation and analysis

Sub-Goal 
Instructions

Goal 
Directive

End-to-End Modeling

Unified 
Transformers
(e.g. BERT)

Previous Work

Goal Directive

Sub-Goal Instructions

Primitive Actions

Sub-Goals

HiTUT

Navigation
Sub-goals/Actions 

Manipulation
Sub-goals/Actions 

Hierarchical Task Learning

(Shridhar et al., 2020; Pratap Singh et 
al., 2020; Storks et al., 2021)



Goal  Directive

Goto(Mug) Pickup(Mug) Goto(Sink) Clean(Mug) Goto(CoffeeMachine)
Put (Mug, 
Coffeemachine)

RotateLeft RotateLeft   … Pickup(Mug) Put
(Mug, Sink)

TurnOn
(Faucet)

TurnOff
(Faucet)

Pickup
(Mug)

…
RotateLeft MoveAhead … RotateRight MoveAhead …

…

High-level 
Sub-goals

Low-level 
Actions

State
(Visual Obs) … … ……

Place a cleaned mug in the coffee machine.

Hierarchical Structure with Self-Monitoring and Backtracking 

Self-Monitoring and backtracking



• Outperform previous STOA with a large margin (160% gain)

Results: Better Generalization in Unseen Environment
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Results: backtracking improves performance
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Task Goal:
Put two books on the desk.



Latent Space Alignment for Improved Partners

• Agents’ representation interpretability 
complements interpretable input (e.g., language) 
and output domains (e.g., object grounding)

• Shared mental models are central to good human-
only and human-robot teams

• Even in simple tasks like digit classification, many 
neural net models are confusing to people

We wish to create agents that can efficiently learn 
task-dependent, human-interpretable representations

“I dont know, I thought the task a little confused, its like our language and 
perception does not match with the machine language and perception. [sic]”

[Mathieu et al. 2004, Nikolaidis
and Shah 2012, Hiatt et al. 2017] Aligning explicit mental models 

supports good team performance

Prior art focuses on model-based approaches; 
we seek to align neural net latent spaces

Scaling the quality of teammates' mental models: equifinality and normative comparisons, Mathieu et al. 2004
Human-robot teaming using shared mental models, Nikolaidis and Shah 2012
Human modeling for human–robot collaboration, Hiatt et al. 2017



Adversarially Guided Self-Play (ASP)
• Representations learned by neural nets may not align with human intuition

• In Adversarially Guided Self-Play (ASP), we combine three training terms

a) 2D encodings generated by a VAE 
of MNIST images

b) Humans might arrange encodings in 
more interpretable formats (e.g. dialpad)

c) Using ASP, we efficiently train models to 
learn the latent space from human 
preferences

Support high task 
performance
Trained via self-play

“Look like” the right sorts 
of representations
Trained via adversarial 
trained with large, 
unpaired corpus

For some specific inputs, 
use specific representation
Trained via supervised loss

Learn a language Use English words
This is the meaning of 
some English words

Adversarial TrainingSelf-Play Supervised Training



Measures of Latent Space Alignment
• Assume agents where inputs X are 

encoded via e to a representation z that is 
classified via c to a label y

• Given two agents, A and B, semantic 
alignment is the normalized mean squared 
error between encodings for the same 
inputs, X

• For some agents like humans, accessing z is 
impossible: pragmatic alignment is the 
task performance when passing 
information via encodings.

• With humans, further study trust of agents

eA cAz yX

Agent A

eB cBz yX

Agent B

eA

X

eB

zA

zB

Semantic 
alignment

eA

X
eB

zA

zB

Pragmatic 
alignment

cB

cA yBA

yAB



Latent Space Alignment among Agents 
• Initial experiments in training models to 

align with pre-trained models
• Compared to prior art, ASP produces 

models with greater semantic and 
pragmatic alignment for the same amount 
of paired data, and measures are 
correlated across of a variety of tasks

• Greatest benefit shown for small (e.g. 32) 
amount of paired data.

Semantic Alignment Pragmatic Alignment

a) 2D encodings 
generated by a VAE 
of MNIST images

b) 2D encodings of an 
autoencoder trained to align with 
the first VAE, using 8 examples



Latent Space Alignment with Humans

a) Latent space “designs” b) Learned latent spaces using ASP

• Trained agents to align with “designs”
• Measure human → agent and agent → 

human performance (pragmatic 
alignment), as well as human trust 
calibration
• Given encoding, human classifies
• Given input, human encodes
• Given encoding and input, human predicts 

classification correctness

[Lee and See 2004]

Trust in Automation: Designing for Appropriate Reliance, Lee and See 2004

Different latent space designs for the same data



Latent Space Alignment with Humans: Results

Classification accuracies when humans classified, given model encodings.
*, ** for p < 0.1, 0.05 for technique and design outperforming all others.

• ASP-trained models supported 
better classification accuracy 
(pragmatic alignment)

• Latent space design utility was 
task-dependent

• ASP-trained techniques results 
in better-calibrated trust: 
humans could better predict 
machine failures

• Pilot study established that 
humans could generate 
encodings, beyond merely 
choosing from options

Trajectory (shown)
Machine’s encoding of 
traj. (hidden)

Participant-generated 
sketch



Next step in the coming year

• Acquiring shared mental models based on collaborative discourse 
• Conducting empirical studies in physical interaction with robots

• Interactive learning to ground language instructions to plan structures
• Developing dialogue strategies to support sample efficient learning and exception handling
• Incorporating algorithms (from simulation) to physical world interaction

• Participant-guided latent space learning
• Allow participants, rather than designers, to provide the latent space design

• Aligning emergent communication with semantic spaces (e.g., word embeddings)

• Integration and evaluation in physical world
• Factorial design and hypothesis validation to measure the role of model/plan explanation, use 

of dialogue for model reconciliation, and incremental learning and refining models and plans


