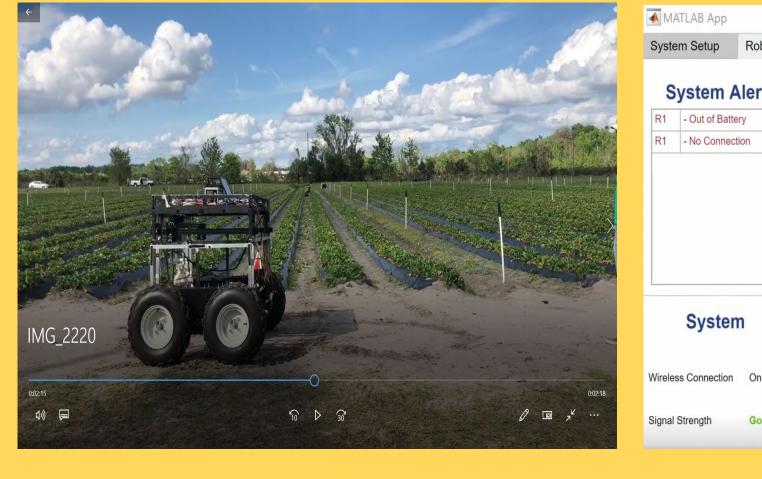
NRI: INT: COLLAB: Distributed co-Robots for Strawberry Harvesting (Award Number: NSF #1924622, 9/1/2019-8/31/2023) PI: Yunjun Xu, University of Central Florida Co-PI: Reza Ehsani, University of California, Merced Co-PI: Manoj Karkee, Washington State University

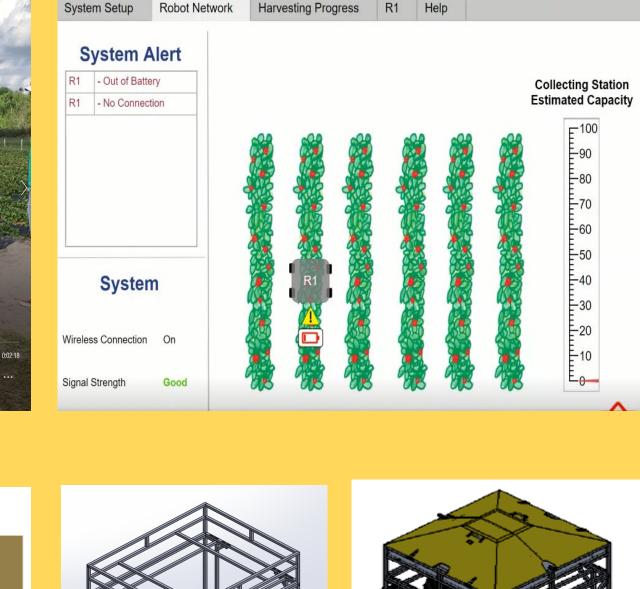
Challenges to be Addressed and Their Significance

- Harvesting is labor intensive, and the associate cost is high for many fruit and vegetable crops
- Due to labor shortage, strawberry production in the US decreases.
- Existing harvesting robots are for greenhouse applications, or mainly monolithic large systems for field conditions
- We are developing an integrative co-robot (small robots) system that can work effectively in harvesting and lower the cost. The advantages include
 - Convenient for moving the robot around
 - There will be no single-point-of-failure issues
 - Robot design is adaptive to farm environment variations

Overall Structure of the Co-Robot System

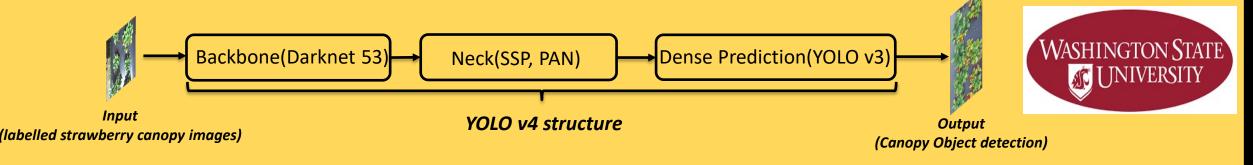

- The scouting robots are small.
- Efficient computer vision and cooperative picking.
- A GUI for growers/users
- Row allocation via a decentralized, auction based algorithm

Also,


- Enhanced design for harvesting robots
- Cost analysis will be conducted.

Distributed Row Allocation:

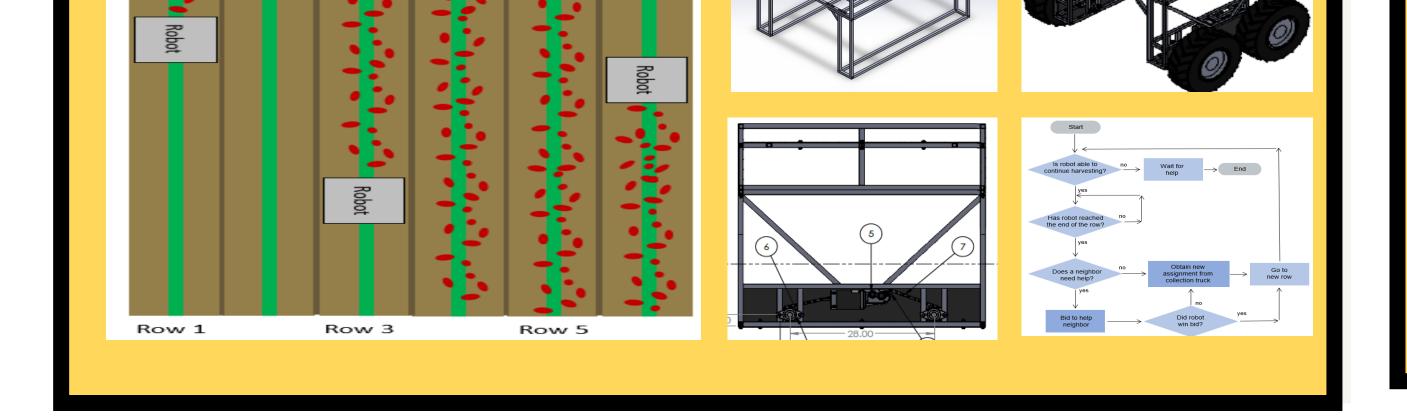
- We are developing a three-layer decentralized, and auction-based scheduling algorithm for a group of small harvesting robots.
- We are developing a graphical user interface to enable growers/users to effectively use the integrated co-robot system.
- We are developing a new learning-based controller to have efficient cross-bed motion controls, and field experiment is ongoing.
- We are redesigning the scouting robot according to the new requirements.



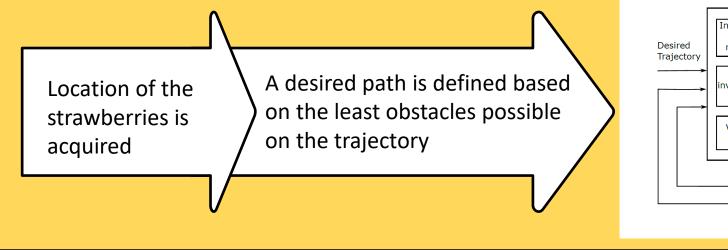
Collection Truck

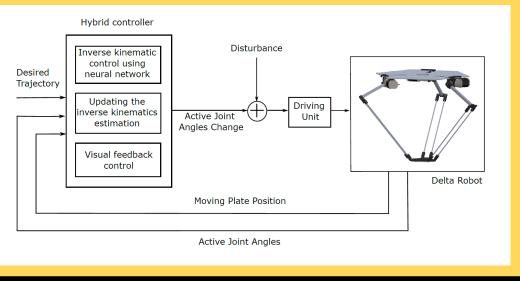
Object Detection in Strawberry Canopy

- To provide the presence, location and maturity of strawberries in field condition
- You-Only-Look-Once (YOLO) v4 was used as deep learning model to detect canopy objects into 5 groups.
 - Flower, and Immature, Nearly Mature, Mature and Overripen Berries
- 1,400 canopy images were collected using an RGB-D sensor (ZED Camera) in commercial fields to train the model
- Preliminary analysis based on 100 test canopy images shows:
 - A mean Average Precision (mAp) of 87.8% with mature fruit
 - F1 score of 0.85
 - Detection time for single image (640×768×3 pixels) of 55 ms with open CV and 400 ms with Matlab 2020b



Cooperative Parallel Robot Arm:


• After a target strawberry location is determined, we can move the end-effector based on a planned motion trajectory tracking. However, as the robot reaches and interacts with a dense crop, the location of the target strawberry can change, which leads to an unsuccessful harvesting.



This control system helps the robot to interacts within a dense crop. To achieve this goal, neural networks and visual feedback control are combined to overcome the limitations of each individual technique.

Planned Tasks

Tasks	Xu (UCF)	Ehsani (UCMKa	arkee (WSU)	Year 1	Year 2	Year 3	Year 4
1. Decentralized row allocation algorithm					,		
2. Image processing for strawberry detection							
3. Cooperative parallel robot-arm picking mechanism					,		
4. Harvesting robot innovation and integration			۲		1		·
5. Cost analysis	[(
6. Evaluation			۲				

UCF:

Redesign the harvesting robotic platform based on the existing one.

New algorithms in row scheduling and controls in cross-bed and over-bed motions.

Many engineering tasks associated with the research thrusts.

• WSU:

More strawberry canopy images will be acquired and used in training deep learning networks

Integrate machine vision system with a strawberry harvest robot

 UC Merced: Gripper/end effector design Arm design; basket design

Intellectual Merit

- Decentralized Row Allocation among Harvesting co-Robots: Partially inspired by human picker strategies, a decentralized, scalable row allocation algorithm will be investigated for harvesting robots to achieve a consensus.
- Machine Vision for Strawberry Identification: Integrated multi-exposure fusion, curvature analysis, and hierarchical image processing, supported by an end-to-end deep learning technique, will be investigated
- Cooperative Parallel Robot-Arm-based Picking Mechanism: The combination of a single degree of freedom robot arm, a parallel delta robot-arm and a conveyer belt system will be investigated
- Engineering Tasks and Integration:
 Robot scouting control, robot design innovation, visual servoing algorithm, GUI, evaluation and cost analysis

Broader Impact

- We anticipated that the new integrated co-robot system will significantly increase the efficiency and lower the cost in strawberry harvesting.
- Results will benefit other operations in strawberry fields or other specialty crops.
- Many UG and G students have participated in this project at three universities.
- Hands-on projects attracting K-12 students.
- We anticipate the GUI will help growers/users, especially those with disadvantages.
- Publications, we have submitted journal and conference papers.

2021 NRI & FRR Principal Investigators' Meeting

March 10-12, 2021

