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Motivation

TABLE III: Fourth Order Magnus Tip Error as a Function

* Industrial workers often perform manufacturing of Collocation Polynomial Order (L = 200 mm)

or service tasks in tight spaces.

« Cooperative manufacturing in confined spaces
demands cooperation modes and levels of
dexterity, sensing, and safety that exceed
capabilities of existing robotic systems.

« Goal: Develop and validate new technologies
Including associated control, sensing and

planning to enable cooperative manipulation in . A -

confined spaces. lllustrative example of a cooperative robot
assisting a human user in a manufacturing
operation in a confined space.
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Cosserat Rod Boundary
Value Problem
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T'(s) = T(s)X(s) Orthogonal collocation + Magnus expansion
u'(s) = —K~' (U(s)Ku(s) + &R" (s)f.) [T(ck) —eVoe¥r | e¥r W, ¢ 86(3)]

The Cosserat rod equations predict the deflected shape of
externally loaded continuum robots, but they can be
computationally expensive with many kinematic constraints.
Our approach combines Lie group integration and

Scientific Merit:
Introduce a new architecture of In-Situ Collaborative Robots (ISCR) in confined spaces.
Facilitate physical interaction between the user and the robot using the robot’s flexibility,
contact sensing and localization, and proximity measurements along body.
Modeling, compliant motion control, and planning with contact for ISCRSs.
Development of an approach for multi-point interaction between the user and the robot.
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« String encoders are used to provide sensing
of the continuum segment shape. 46 = J,.de
We present a kinematic model to solve for the o,
segment shape with general string encoder Y
routing and are investigating how to design
the strings to improve kinematic conditioning.

Design Features

« Passive and active safety
« Proximity, contact, and force sensing
(proximity detection cone shown on one of

the segments)
« Combined continuum and rigid link structure
 Allows multi-point user interaction along its
length

Sampling-Based Path Planning with Bracing

Sample path from our RRT algorithm:

Manipulator Specifications p

« 11 DOF
* Approx. 2 m reach
« 1.8 Kg payload at full reach

Evaluation tasks
« Sanding, caulking, and pipe assembly.
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To find a path, we first partition the robot into “sub-robots” (colored set of links above) that can
cantilever their own weight plus the weight of all distal sub-robots folded up at their tip

We explore the configuration space of each sub-robot using a modified RRT algorithm. Each
time a sub-robot finds a bracing point, it creates the root of a new RRT for the next sub-robot.
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