Transforming wheeled mobility

NRI: INT: MiaPURE (Modular, Interactive and Adaptive Personalized Unique Rolling Experience)

PI: Prof. Elizabeth T. Hsiao-Wecksler, Mechanical Science and Engineering **Award #** 2024905; October 1, 2020

Consultants:

Adam Bleakney, Wheelchair Track Head Coach, Disability Resources Educational Services (DRES)

Dr. Jeannette Elliot, Head Physical Therapist, DRES

Dr. Patricia Malik, Former Director, DRES (retired)

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021

Contact ethw@illinois.edu

Transforming wheeled mobility

Challenge

- Wheelchair design has changed little in 150 years
- Manual wheelchairs
 - 70% upper extremity injuries
 - Propulsion needs both hands
 - Limited terrain & tight spaces
 - Easy to tip/fall
- Powered wheelchairs
 - Heavy, large, costly
 - Limited tight spaces
 - Need modified vehicle

INT: MiaPURE (Modular, Interactive and Adaptive Personalized Unique Rolling Experience)

Solution

- PURE (Personalized Unique Rolling Experience)
 - Self-balancing ballbot
 - Hands-free motion
 - · Lean-to-steer ability
 - · Omni-directional motion
 - Compact design
- Modular
 - Common ballbot drivetrain
 - Open-source drivetrain platform
 - Wheelchair Payload robot
- Interactive
 - Intuitive user interface
 - Direct physical interaction
 - Remote command
- Adaptive
 - Multiple users loads
 - Multiple terrains
 - Driving assistance

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021

UNIVERSITY OF

INT: MiaPURE (Modular, Interactive and Adaptive Personalized Unique Rolling Experience)

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Scientific Impact

- Common omnidirectional ballbot platform
 - Compact, agile, safe
 - Open-source
 - Multiple human-robot interfaces

User-Centered Design (continual focus & UX groups) manual wheelchair users, able-bodied allies

AIM 1: Explore intuitive human-robot user interfaces.

AIM 2: Address low-level control of ballbots under direct physical interaction or remote command.

AIM 3: Establish higher-level control to improve user driving experience.

Self balancing w/ 50 lb load

Broader Impacts

- Transformational user-centered co-robot
 - Organic hands-free rolling mobility
- University courses, high school summer camps
 - Design thinking focused on design for disability
- New Human Performance Maker Lab
 - US Paralympic Training Center in UIUC/DRES

2021 NRI & FRR Principal Investigators' Meeting March 10-12, 2021

Contact ethw@illinois.edu