Robotic Shepherding for Flow Control in Uncertain Dynamic Environments

Ermin Wei, Randy Freeman, Kevin Lynch, Michael Rubenstein

Northwestern University

Technical Challenges

- Networked shepherds and sheep
- Coupled stability analysis for flock configuration estimation and control
- Distributed sensing and learning
- Robotic shepherds and sheep

Scientific impact

- Multi-agent coordination and control
- Coupled estimation and control with optimal sensing
- Adaptive distributed algorithms, tunable depending on hardware specifications
- Economic scalable robotic hardware

Proposed Solutions

- Flock configuration estimation and control
 - Formulate costs to encode global flock objectives and develop gradient descent and accelerated gradient descent control strategies
 - Model predictive control (MPC) for more sophisticated tasks
 - Investigate flock configuration controllability and observability
 - Swarm formation control
- Coupled stability analysis
 - Design tractable nonconservative coupled stability analysis
 - Develop controller and use integral quadratic constraints framework
 - Provide ranges of parameters with guaranteed stability

Flexible distributed sensing and learning

- Propose flexible distributed algorithm framework with flexible tradeoff for communication, computation and locomotion depending on the environment
- Investigate convergence guarantees
- Design optimal algorithms for the robotic shepherd applications

Robot sheep and shepherds

- CoachbotV2.0: Raspberry Pi, scalable, 10cm in diameter, 12cm high
- Faithful hardware simulator for fast prototyping
- Teleoperation capability: human operators may control partial robotic team remotely

Applications

- Disaster evacuation
- Crowd control
- Military scenarios in collaboration with
 Army Research Laboratory (ARL)

Education and Outreach

- Curriculum development: K-12, college, graduate
- Online education: YouTube channel
- Underrepresented groups: SWE, Northwestern
 Summer Research Opportunity Program (SROP)
- Public outreach:
 Museum of Science
 and Industry in Chicago

Potential Impact

- Utilize autonomous robots in unknown and potentially hazardous environments
- Reduction in cost and time in delivery of necessities and evacuation after natural disasters
- Enable human and robot collaboration via teleoperation