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| earning from Demonstrations

|Imitation Learning

Inverse Reinforcement Learning (IRL)

* Pioneered by co-Pl Russel (1998)

* Apprenticeship Learning (Abbeel & Ng, 2004)
HRI Optimizing Legibility (Dragan, 2013)

Cloud Robotics (Kuffner 2015, Kehoe, Abbeel,
Goldberg, 2017)



Cooperative IRL

A CIRL is a 2-player cooperative Markov game (S, (A", A", P, Ry)

Human and robot take simultaneous actions, get same reward parametrized by ¢
Human preference Ry initially unknown to the robot

This incentivizes the human to teach and the robot to learn this preterence

Both agents can reason about the robot's belief state, making it a sufficient
state representation (together with the environment state)

Example: human signals which objects should not be decluttered by replacing
them In the environment when the robot removes them




4 Research Objectives
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1. Extend CIRL Formal Framework:

2. Distributed Sensing, Reward Models using Deep Learning
3. Learning Hierarchical Task and Reward Structure

4. Bidirectional / Active Human—-Robot Communication
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INntegrative Application:

Surface Decluttering

o Increase productivity and safety In homes, machine
snops, warehouses, offices, and retall stores.
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3D-Prints
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Local Severs (eg. 5G):

Cloud




Robust Task-Based Grasping as a Service

Jingyi Song', Ajay Tanwani', Jeffrey Ichnowski', Michael Danielczuk', Kate Sanders', Jackson Chui’,
Juan A. Ojea?, Ken Goldberg'
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Fig. 3: Task-directed grasping for spray bottle. The stay-out zones of the spray bottle object displayed on the second row model the
tasks described on the first row, resulting filtered grasps showed on the third row.
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Preference learning along multiple criteria:
A game-theoretic perspective

Kush Bhatia Ashwin Pananjady
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Multi-Principal Assistance Games:
Definition and Collegial Mechanisms
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LazyDAgger: Reducing Context Switching | Mode Select
in Interactive Robot Imitation Learning

Ryan Hoque', Ashwin Balakrishna', Brijen Thananjeyan', Carl Putterman’, Michae
Daniel Seita', Daniel S. Brown', Ken Goldberg'
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Broader Impacts

“The most important book | have read in quite some time.”
—Daniel Kahneman, authorof THINKING, FAST AND SLOW
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I'm Blooma. | love art, science, math, dancing, basketball, and roller
skating, but my favorite activity is inventing new things... especially
robots! And I'm super excited to tell you how | figured out the best

way to train a robot.




15 min Video

Nov 2020

Subtitled in Spanish,

How to Train Yoy, Japanese, Hindi, and simplified Chinese

How to Train Your Robot

https://vimeopro.com/citrisproductions/how-to-train-your-robot
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How to Train Your Robot
video based on the book: How To Train Your Robot

by B. Goldberg, K. Goldberg, and A. Chase, illustrated by D. Clegg
(with support from NSF and UC Berkeley's Lawrence Hall of Science)

Info and Resource Page: (Google Doc)
https://bit.ly/How-To-Train-Your-Robot-Info

To view subtitled Spanish, Japanese, Hindi, and Chinese (Simplified), just click the small blue CC (closed caption)
button on the right.




