NRI: INT: Soft Multi-Arm Robot (SMART) for Synergistic Collaborations with Humans

Project Objectives

- Design and fabrication of soft multi-arm robots capable of dexterous manipulation
- Motion planning and control of soft multi-arm robots
- Trust-based human-robot interaction for efficient cooperative manipulations
- Environment and human motion perception
- System demonstration and evaluation in the apple harvesting application

Scientific Impact

- Advance key design principles for soft robots that address joint optimization and control of actuation and stiffness-tuning
- Provide solutions to the daunting problem of motion planning and control for multiple soft robotic arms operating in dynamic environments
- Develop a trust-aware human-robot collaboration scheme that explicitly exploits the evolving human-robot trust to design the robot control policy
- Develop a multi-sensor fusion framework for efficient and robust perception of complex environment and human motion

Education and Outreach

- Undergraduate research on soft robot development, motion planning and control, HRI, and computer vision
- Demos of soft multi-arm robots at various outreach events
- Disseminate research to the agriculture and robotics industry

2023 FRR-NRI Principal Investigators' Meeting May 2-3, 2023

Zhaojian Li, Xiaobo Tan, and Vaibhav Srivastava, Michigan State University Changyong Cao, Case Western Reserve University

Development of Soft Robotic Manipulators

Soft gripper and soft robotic arm with tunable stiffness

- Designed and prototyped a soft robotic gripper for dexterous grasping of objects with different shapes and weights
- Designed and prototyped a soft robotic arm capable of stiffness varying and omnidirectional bending in 3D space
- Developed a modular design and method for a multi-segment soft robotic arm
- Developed a new actuation method by combining the cable actuation and the pneumatic actuation for rapid actuation and self-weight reduction.

Soft Robot Control Algorithm

The soft manipulator with stiffness-tunable core

Tracking result in the task space

- Extended a Lagrangian-based dynamic model with the stiffness-tuning mechanism for the soft manipulator
- Developed a nonlinear model predictive control (NMPC) framework to control the motion and stiffness simultaneously in the configuration space and the task space
- Validated the efficacy of the proposed model and controller with simulation, showing the average error of 0.001m when tracking one circular trajectory.

- Human supervises a robot tasked with picking objects
- Current work focused on how the complexity of the scene and assistance-seeking by the robot affect human trust
- Input-Output Hidden Markov Model for human behavior
- Estimated model suggests that trust may increase when the robot asks for assistance in high complexity scenes
- Optimal policy is a threshold-based in high complexity scenes
- Trust-Aware policy outperformed Trust-Agnostic policy

camera

- Collected a comprehensive orchard dataset with multiple apple varieties and varying lighting conditions
- Developed an Occluder-Occludee Relational Network to improve detection of cases with occlusion scenes, achieving 0.96 accuracy and 0.88 F-1 score
- Developed a novel active laser scanning localization scheme with <6mm error, working indoors and outdoors
- Successful field demonstration with >80% fruit picking rate

Award ID#: 2024649

