NRI: ROBOTICS, SCIENCE AND TECHNOLOGY FOR FORESTRY (USDA/NIFA \#584401)

PI: Pratik Chaudhari, Co-PIs: Vijay Kumar, Patrick Corey Green

LARGE-SCALE MAPPING AND ODOMETRY

Semantic mapping

Over-canopy reconstruction

LiDAR odometry ($\sim 0.01 \%$ drift)

OUR VISION AND RESEARCH GOALS

Sampling	Coverage Rate	Resolution	Labor
Over the canopy measurements	Fast	Low	Minimial
Under the canopy UAVs	Moderate	Medium	Modest
Ground measurements	Very slow, but necessary	High	High

- Large-scale mapping using multiple UAVs
- Fine-grained semantic understanding of unstructured environments
- Pairing human-collected ground measurements with UAV data

CURIOUS BUT BUSY BEE EXPLORER

Take controls that deteriorate the minimal sufficient representation; when you cannot do so you have learnt the scene

PLATFORMS

FALCON 450

~35 min flight time, LiDAR, stereo vision, flexible compute (NUC, or Xavier NX) SENSOR TOWER
LiDAR, RGB global shutter camera, RTK GPS, thermal camera; onboard compute for data acquisition and compression

MAP THE PENN CAMPUS

FORESTRY ESTIMATES

Would like to accurately measuring the DBH (diameter at breast height), main stem taper profile, and height of the trees.

Measurement error with respect to ground truth obtained from Virginia Tech

1. Home-brew tool for labeling point clouds, train a semantic segmentation network from range images

2. Estimate control points and diameter in real time, accumulate profile estimates, re-cluster for correcting height

Catalogue the biodiversity and the carbon captured. The 3D map will be matched with Penn's existing database.
$\operatorname{argmin} \underset{\substack{p\left(x\left|\left.\right|^{t}, u^{t}\right), p(z \mid x), p(u \mid x)\right.}}{\mathbb{E}}\left[I_{g}\left(y_{t+1}(u) ; z\right)-I(z ; x)\right]$

KEY CHALLENGES

Planning with very tight tolerances

Extreme contrast changes

