
Proofs, Provers, Processes at Scale

Natarajan Shankar
SRI International Computer Science Laboratory

Menlo Park CA 94024

June 22, 2020

The science of operations, as derived from mathematics more espe-
cially, is a science of itself, and has its own abstract truth and value.
Ada Lovelace

Formal methods transform the science of computing into a set of human
and automated tools for designing, analyzing, and creating computer systems.
Such formal tools address a range of problems that span the design lifecycle
from capturing requirements, crafting specifications, evaluating designs, and
synthesizing and analyzing code. It used to be believed that formal methods
could only be applied to toy problems with intense manual effort, and using them
to address the challenges of real software would remain a pipe dream. Several
things have happened in the last three decades to challenge this widely-held
preconception. One, the problems of software have become more acute and every
week we see a fresh wave of catastrophic software failures. Traditional software
development techniques have not been particularly effective at delivering reliable
software. Two, breakthroughs in decision procedures, theorem provers, model
checkers, and static/dynamic analyzers have given us a suite of tools that are
making it cost-effective to use formal methods. Three, we have some significant
examples of formally verified artifacts. Four, many more people have been
trained in the effective use of formal methods. However, there is plenty of room
for scaling the power and utility of formal methods.

We first enumerate the dimensions along which we can scale formal methods:

1. Problem size: Code size is a poor measure of problem size, but can we
scale deep formal analysis to systems with millions of lines of code?

2. Cost: Developing code through formal methods has a high development
cost but can it save cost and effort in testing and maintenance?

3. Quality: Does formal methods yield higher levels of software quality as-
surance?

4. Performance: Can formal methods yield higher quality code through prin-
cipled optimization.

1



5. Productivity: Will the technology for verification, synthesis, and transfor-
mation enhance programmer productivity?

6. Usability: Will formal methods tools feature highly usable interfaces that
make the technology accessible to much wider audience.

7. Maintainability: Can we control the overhead of maintaining specifications
and proofs, and even exploit the technology to support the evolution of
the software.

8. Degree of automation: To what extent can we automate specification,
code generation, and verification to reduce the manual effort needed to
effectively employ formal methods.

9. Degree of specialization: Formal methods need to be customized to indi-
vidual domains have their own formal models, background theories, and
notations.

10. Expressiveness: Formalization and automation need to cope with expres-
sive specification and programming languages while exploiting trade-offs
between automation and expressiveness.

11. Abstraction level: Formal methods can be applied at varying levels of
abstraction from hardware models to higher-order logic.

12. Background libraries: Programming languages make extensive background
libraries available to a programmer who can build on these to script their
programs. Formal tools also need such libraries if they are to match the
effectiveness of modern programming languages.

We have a range of fairly effective technologies across the above scalability
dimensions. Dynamic analysis techniques based on test generation and runtime
verification are quite effective at detecting bugs. Static analysis methods are
also efficient for detecting and even demonstrating the absence of certain classes
of runtime errors. These techniques do not have extensive specification over-
heads. They operate efficiently, and are accessible to a fairly broad audience.
Solvers for Boolean satisfiability and satisfiability modulo theories offer a Swiss
army knife of capabilities for software analysis. They can be used for test gener-
ation, bug-finding, symbolic analysis, model checking, and type checking. These
are not as scalable as testing and static analysis, but are capable of handling
quite realistic examples. Model checkers are effective for design time analysis
and for demonstrating expressive temporal properties of complex designs. Such
model checkers can also be applied to software components on the scale of hun-
dreds of lines. Automated synthesis techniques can be used to construct small
programs or program components. Beyond that, more manual techniques for
program verification can be used to state and demonstrate expressive properties
of complex software systems.

2



What can we achieve now? The seL4 project performed around ten years
ago offers some rough order of magnitude estimates for large-scale software veri-
fication. The project estimates that it takes about 3 to 4 weeks per 1000 lines of
proof.1 The seL4 project produced 10KLOC with about 200KLOP (kilo-lines of
proof) at 18 person-years. Even though lines of proof is not a meaningful metric
since it can vary wildly depending on the available automation, we can assume
that these numbers are accurate to within a factor of ten. In terms of (equiv-
alent) lines of C code, if one roughly estimates that each line of code requires
an average (with a substantial variance) of 5–10 lines of proof (seL4 was 20),
verified code productivity can be around 1.5–3 KLOC/person-year at a conser-
vative estimate. The seL4 proofs were performed by highly trained researchers
and their students. Also, in the current state of the art, proof maintenance can
be considerably harder than code maintenance. In contrast, for critical system
code built without the use of formal methods, software productivity levels are
reported to be around 4 to 7 KLOC/person-year. We can expect significant im-
provements in the productivity, usability, and maintainability of formal methods
as the technology matures over the next decade.

What is the single-most important pathway to scalability? We have touched
on a number of dimensions of scalability. Obviously, we need to see improve-
ments along all of these dimensions: scale, cost, usability, productivity, automa-
tion, maintainability, expressiveness, specialization, etc. However, there is one
dimensions that correlates most effectively with the scalability of formal meth-
ods, namely, abstraction. Engineers use abstraction in the form of models which
are then realized in working artifacts. Formal reasoning must also move up the
value chain to capture models that allow software designers to abstract away
from low-level implementation details. These models can range from general-
purpose models of computation that offer powerful programming abstractions
to special-purpose domain-specific tool boxes. Such abstract models can be eas-
ily supported by code generation to multiple languages and platforms. Proofs
and counterexamples are easier to construct and maintain since abstract mod-
els support proof patterns and effective automation through decision procedures
and model checking. MATLAB Simulink/Stateflow is an example of the success
of model-based software engineering.

In order to leverage the power of abstraction, we need to identify sys-
tematic ways of mapping highly reusable mathematical models to executable
code/hardware in domains such as

• Grammars and parsers

• Compilers

• Cryptography

• Cyber-physical systems

1Productivity for Proof Engineering Mark Staples, Ross Jeffery, June Andronick, Toby
Murray, Gerwin Klein, Rafal Kolanski, ESEM’14

3



• Signal processing

• Machine learning

• File systems, and

• Cryptographic/Distributed protocols.

With such tools, we can empower domain experts to employ formal meth-
ods to create tens of thousands of (equivalent) verified lines of code a year.
These abstract models will be more reusable than low-level software. They can
be more easily maintained and retargetted to new platforms and applications.
They are also more amenable to proof automation. Advances in automated for-
mal methods tools and techniques coupled with increasingly specialized use of
abstraction in a range of domains opens up several possibilities. In particular,
we can revisit the design and construction of the entire hardware/software stack
in order to eliminate a range of poor design choices that have made our systems
insecure, unreliable, and unmaintainable.

4


