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coupling bio-sensors on people and wireless networks

Goals
Real-time monitoring health and behavior
Feedback via adaptive and personalized interventions m
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Sensors & coordinator energy constraints
Sensing & communication are state dependent

Networked decision systems
New decision-making problems involving

the joint design of sensing, communication and control

Cyber-Physical System

Sensor scheduling

Design challenges

Problem
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Choose k out of n sensors such that
the expected distortion between W and W is minimized
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High complexity and signaling
effects

Observation-driven scheduling: One-shot Problem
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Main resultll!

Person-by-person optimality of max-scheduling and
simple estimation strategies for
independent and symmetrically correlated
Gaussian observations

Send the measurement with largest magnitude

Estimate for the unobserved sensor: Conditional
mean given the observed sensor value

[1] Vasconcelos & Mitra “Observation-driven scheduling for remote estimation of two Gaussian RVs”

IEEE Trans. on Control of Network Systems (under review) 2018

Observation-driven scheduling for networked estimation
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Performance comparison in the independent Gaussian case
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“Open-loop” sensor scheduling
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Observation-driven scheduling
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Model-free observation-driven scheduling
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Unknown distribution
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Data
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Subgradient of G(a)
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Convex

Approximate Convex-Concave Procedure
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Data: Gaussian Mixture Exact cost function Experimental results

~ 85% are within 50% of the optimal cost

Scheduling with Energy Harvesting: Sequential Problem
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Main resultl2!

Global optimality of max-scheduling with simple
estimation strategies for
independent observations with symmetric and
unimodal densities
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