A Review of Neural Network based Semantic Segmentation for
Scene Understanding in Context of the self driving Car

J. Niemeijer!, P. Pekezou Fouopi?, S. Knake-Langhorst?, and E. Barth?

! Medizinische Informatik, Universitit zu Liibeck, J oshua.Niemeijer @student.uni-luebeck.de
2 German Aerospace Center, Braunschweig, {Paulin.Pekezou,Sascha.Knake-Langhorst}@dlr.de
3 Institute of Neuro- and Bioinformatics, Universitiit zu Liibeck, barth@inb.uni-luebeck.de

Abstract

This paper tackles the challenge of scene understanding in context of automated driving. To react properly to the con-
ditions given by the surrounding scene, the car has to understand its environment. Further the real time capability of a
method solving this task is essential. For scene understanding the car has to detect and classify its surrounding objects.
For this purpose a semantic segmentation can be employed to assign a class label to every pixel. In this paper we evaluate
the state of the art methods for the semantic segmentation and perform tests on the FCN-8 architecture. Due to hardware
limitations, we train the FCN-8 on a downscaled version of the Cityscapes Dataset, containing urban traffic scenes. The
evaluation of the results shows, the necessity to train the FCN-8 on the original size City Scapes Dataset. We conclude

that we need to purchase a better hardware.

1 Introduction

Scene understanding is an important task in the context of
automated driving. In order to react properly to the condi-
tions given by the surrounding scene, the self driving car
has to understand its environment. For example informa-
tion about the state of other traffic participants or objects
are needed to predict their behaviour and avoid collisions.
Besides the quality of scene understanding, the real time
capability of a method solving this task is essential, be-
cause of the fastly changing traffic conditions. Amongst
other things the self driving car perceives its environment
through a camera. By performing a semantic segmentation
on the recorded images, one receives labels for every pixel,
describing the object it is part of. Hence an understanding
of the present objects and their location is created. These
information in turn are the basis of further scene analysis.
In this paper we review a variety of pixel wise semantic
segmentation Methods based on fully convolutional neural
networks. In addition we show the results of training and
testing the FCN-8 architecture from the paper [1] on the
Cityscapes Dataset [2].

2 Material and Methods

Semantic segmentation can be understood as the pixel wise
labeling of an image, to declare which class-label each pixel
belongs to. An example can be observed in Fig. 1. The
top picture shows the image picturing a traffic scene to be
segmented, the image on the left side is the groud truth
semantic segmentation and the image on the right side is

Figure 1: On top the downscaled version of the original
Cityscapes validation image can be seen. The image on the
left side is the ground truth and the image on the right is the
result of the network trained on the Cityscapes Dataset.

the semantic segmentation computed by a neural network.
The different gray values indicate the classes the pixels be-
long to (e.g. car or road etc.). There are many algorithms
to tackle this task, however recently artificial neural net-
works have offered the best results. In general there are
two main architectures of artificial neural networks to cope
with the task. Bounding Box approaches first detect the ob-
ject and then classify all the pixels belonging to this object.
However recent challenges showed that methods which are
based on the pixel wise segmentation architecture proposed
in [1], perform generally better. Hence in this paper we take
a closer look at these methods.

The general architecture, as it is presented in [1] can be ob-



Figure 2: The general architecture of pixel wise segmenta-
tion is presented. The image information is processed to a
feature map of the shape (1). From this feature map a score
map for each of the (in this case 21) classes is derived (2).
These score maps are upsampled to the original image size
(3) and for every pixel the class with the highest score is
chosen (4). The image was taken and modified from [1].

served in Fig.2. The architecture is divided up into four
stages. In the first stage the image data is processed, by
extracting the most important features. The output of this
data processing is a downscaled feature map, in which ev-
ery pixel represents a receptive field in the original im-
age and hence holds the information of this area. Based
on this information in the second stage a score map Sc
is computed for every class. So the output of this layer,
the score map (Sc), is of the shape lengthFeatureMap X
widthFeatureMap x numberClasses. The score values
can be interpreted as a probability of a pixel, to belong to a
semantic class. In the third stage, the now coarse score map
is interpolated to the size of the original image. For inter-
polation commonly the bilinear interpolation is used. Here
an upsampled score value is weighted by the inverse dis-
tance to its four closest neighbours in the lower-resolution
score map. Now for every pixel in the original image for
every class there is a score. To determine the class label of
an pixel (z,y), in the fourth stage the class with the maxi-
mum value over all score values is computed, making it the
pixel’s class label C'L.

V(z,y) CL = arg max Se(z,y, z) (1)
Approaches that are based on this architecture try to im-
prove the data processing, the creation of the score layer or
the interpolation stage. For example the approach presented
in [3], tries to improve the interpolation stage through an ar-
chitecture based on the Laplacian Pyramid. In this approach
a low-resolution score map is refined by using higher fre-
quency details derived from higher-resolution feature maps.
The idea is based on the assumption that lower-resolution
feature maps have bigger receptive fields and hence more
context information, leading to better predictions in the
score map. Whereas higher resolution feature maps con-
tain more information about local structures. So refining a
low-resolution score map, which is computed from a lower-
resolution feature map, with features derived from a high
resolution score map saves details, hence creating confident
predictions with a high level of details.

Conditional random fields are used in the creation of the
score map. The approach in [4] is to capture the spatial
context of a pixel and thus improving its classification, by
using conditional random fields. The conditional random
fields is thereby constructed, so that for every spatial posi-
tion in the coarse feature map, there is a node. The pair wise
connections between a node and all other nodes are drawn
within a certain range around the node. By choosing the
range spatial relations like above or under can be modelled.
An other possibility is, to improve the creation of the fea-
ture map. In [5] a new shallower architecture of the residual
network is used to create better features and thus improve
the creation of the score map. Residual networks are neu-
ral nets that include neurons that map their own input to
their output (residual units). The advantage is that these
nets are easier to optimize. This new approach is based on
the finding that paths in the residual nets that are deeper
than the effective depth (number of residual units) aren’t
trained fully end to end. So by reducing the effective depth
the net becomes fully end to end trainable. Empirical re-
sults show that these networks outperform deeper residual
networks [5]. The approach in [6] also tries to improve the
feature map. A pyramid scene parsing network is proposed,
which combines global context information and local cues
to improve the pixel wise predictions. However its archi-
tecture is slightly different from the baseline approach. In
this case not the score map, which is created by a residual
network, is upsampled, but directly the feature map. The
pyramid pooling module is applied to the upsampled fea-
ture map and fuses features under four different scales. It
thus separates the feature map into different sub regions and
forms pooled representation for different locations. Then
these new features are upsampled to the size of the origi-
nal feature map and concatenated with it. Subsequently the
pixel wise predictions are made by an convolutional layer.

Table 1: Model performance on the Cityscapes Dataset [2]

Model mean class loU  mean class iloU
ResNet-38 [5] 80.6 57.8
PSPNet [6] 80.2 58.1
LRR-4x [3] 71.8 479
Adelaide-context [4] 71.6 51.7
FCN 8s [1] 65.3 41.7

Table 1 shows an overview of the presented methods. As
it can be seen the FCN-8 performs worse than the methods
inspired by its architecture (information about the dataset
and the metric in Results and Discussion). The main reason
we decided to use the FCN-8 was that at the time it was
already available as a Caffe model. In addition to this the
models from [5] and [6] were published only recently and
developing a new architecture was not the goal of this work.

2.1 FCN-8

Fig. 3 shows the architecture of the FCN-8, which we used
to perform experiments on the Cityscapes Dataset. This net-
work is a fully convolutional network. Thereby the spatial
information of the image is preserved. By employing a fully



connected layer this information would be destroyed [1].
The creation of the feature map is done in the layers Conv1
to Conv6-7. This network is a neural network for classifi-
cation trained on the same dataset as the semantic segmen-
tation without the classification layer. In this case the net-
work is the VGG-16 [7]. The FCN-8 combines the output
of fine and coarse layers, as it can be observed in Fig. 3.
This is done by first scoring the output of these layers after
pool3, pool4 and conv6-7 and then aligning the score maps
through upsampling (interpolation) and cropping. After the
score maps are brought to the original image size, they are
merged by a 1 x 1 convolution, summing the score maps.
By combining the information of coarse and fine layers the
model makes local predictions with respect to global struc-
tures. The interpolation is initialized as a bilinear interpola-
tion. During training the whole model is fine tuned end to
end.

Figure 3: The figure (from [1]) shows the architecture of the
FCN-8. (Conv = convolutional layer/pool=pooling layer)

3 Experiments

3.1 Dataset and quality metric

The Cityscapes Dataset contains 5000 images of street
scenes with fine annotations for the purpose of semantic
segmentation. An example for these images is pictured in
Fig. 1. The images are taken in 50 cities under different
conditions, seasons and daytimes. Annotations include 30
classes, which are divided up into the categories flat, hu-
man, vehicle, construction, object, nature, sky and ground.
The images have got a HD resolution of 2048 x 1024 pixels.
The training set includes 2974 images, the validation set in-
cludes 501 images and the test set includes 1525 images.
Due to the fact that we do not have the ground truth images
of the test set and hence can not evaluate results on this test
images, we performed the tests on the validation set.

To evaluate the results of the experiments we use the qual-
ity metric IoU and iloU, as is done in the cityscapes bench-
mark. These metrics are scalar values € [0, 1] computed
per class over the whole test set to evaluate the segmenta-
tion. IoU (intersection-over-union) is defined as follows:

IoU = TP/(TP + FP + FN) )

In which per class T'P stands for true positive, F'P for false
positive and F'N for false negative. This could also be in-
terpreted as dividing the intersection of the segmentation

with the ground truth by the union of the segmentation and
the ground truth. IoU is biased toward object instances
that cover large image area. To address this problem 10U (
instance-level intersection-over-union) is used:

iloU =iTP/(iTP + FP +iFN) 3)
¢T'P and i F'N are computed by weighting the contribution
of each pixel by the ratio of the class’ average instance size
to the size of the respective ground truth instance.

3.2 Training

Training the FCN-8 on the Cityscapes Dataset was done
using a server with a Tesla K-20 GPU. This GPU has got
5 GB of RAM, which limited the maximum size of the
images due to the fact that the image information and the
size of the derived feature maps increase with the size of
the image. Accordingly we downsampled the images from
2048 x 1024 pixels to 512 x 256 pixels, which offered a
good RAM Capacity utilization. We already had a caffe
model (https://github.com/shelhamer/fcn.
berkeleyvision.org.git) of the FCN-8 trained
on the Pascal Dataset to initialize the FCN-8 with for
finetuning. We made the assumption that the features
derived from the Pascal Dataset are well suited for the
Cityscapes dataset. This can be assumed due to the fact
that these dataset are similar and in general the features
derived are mostly some kind of edge detection. We also
adopted the interpolation from the given model, assuming
it would be well suited due to the fact that the changes of
the interpolation parameters are very small and the datasets
are similar. Thus we retrained the layers that create the
class-scores. For training we used the train IDs from the
Cityscapes Dataset, encoding the 19 classes that can be
observed in table 1. The training was done for 100000
iterations with a learning rate of le-14 and a batch size of
three (again due to the low RAM).

3.3 Results

Fig. 1 shows example of the semantic segmentation per-
formed on the rescaled validation set. On top the image to
be segmented is pictured, on the left side the ground truth
and on the right side the result of the FCN-8 on the rescaled
image. It can be observed that in general the main struc-
tures of the picture, as cars, the street and the vegetation are
well captured. In general these structures tend to occupy
more space in the segmentation, than they actually occupy
in the ground truth image. However the model struggles to
segment finer structures as e.g. the rider.

In Table 2 the results of the test on the rescaled validation
data are displayed relating to the classes (rescaled). On the
left side of these scores the scores of the FCN-8 trained on
the full sized Cityscapes Dataset (orig) can be seen. These
scores are computed on the full size Cityscapes Test Set.

In general it can be observed that the FCN-8 trained on
the rescaled Cityscapes Dataset performs on the valida-
tion dataset worse than the FCN-8 trained on the full sized



Table 2: Performance of the FCN-8 on the Cityscapes
Dataset. orig. FCN-8 trained on the full size Dataset;
rescaled FCN-8 trained on the rescaled dataset

Class IoU orig.lrescaled  iloU orig.Irescaled
building 89.2169.4 v

fence 442128 v

pole 47.4110.9 v

road 97.4181.9 /17
sidewalk 78.4134.1 v

sky 93.9170.1 v

terrain 69.3119.5 v

traffic light  60.113.6 v

traffic sign ~ 65.0115.5 v
vegetation 91.4174.6 AV

wall 34910.8 v

truck 35311.1 22211.1
train 46.511.0 26.7 | 3.54e-04
rider 514103 334104
person 77.1130.7 5591299
motorcycle  51.610.3 31.110.1
car 92.6165.4 83.9150.1
bus 48.611.7 30.810.5
bicycle 66.8128.7 49.6123.7
average 65.3127.0 41.7113.2

Cityscapes Dataset and tested on the test dataset (65.3 vs.
27.0 IoU and 41.7 vs. 13.2 iloU). Especially those classes
which make up a low portion of the rescaled training data
have a much lower IoU and iloU scores. For example the
classes truck and train have a prior portion of 0.0046 and
0.0016 and the IoU scores fall from 35.3 to 1.1 and from
46.5 to 1.0. Whereas the class car has a prior portion of
0.052 and the IoU scores only fall from 92.6 to 65.4.

The deployment time for both Models is 0.5 seconds or
lower. The FCN-8 orig. was deployed on the TitanX (16
GB RAM) and the FCN-8 rescaled on the Tesla K20 GPU.

3.4 Discussion

The evaluation of FCN-8 trained on the rescaled dataset
on its own training dataset showed similar results as the
evaluation on the rescaled validation dataset (29.2mean
IoU/13.35mean iloU). It can be assumed, that no Overfit-
ting took place but possibly Underfitting. Although the loss
function converged it was still high, leading to the assump-
tion that training for more than 100000 iterations might
bring an improvement.

That the FCN-8 trained on the rescaled Dataset offers re-
sults, that are a lot worse is caused by the fact, that the in-
formation available for training the network is only 1/16
of the original information. The rescaling of the images
leads in particular to the fact, that classes that make a small
portion of the original training data, are not well enough
represented for FCN-8 to offer good results. If the FCN-8
is trained on the Cityscapes Dataset in its original size, this
model doesn‘t fulfil the real time requirements (runtime less
than 100 ms) since it takes around 0.5 seconds to segment
an image. However deploying the model on dedicated hard-
ware like Nvidia DPX2 (http://www.nvidia.com/
object/drive-px.html) can considerably reduce the
run time.

Conclusion

The results of this work show that training the FCN-8 on
the rescaled Cityscapes Dataset leads to a low detection
rate, while deploying the FCN-8 on the full size Cityscapes
Dataset doesn’t fulfil the real time requirements. However
for deploying the FCN-8 in a self driving car, a good detec-
tion rate is necessary. Hence we need to train the the FCN-8
on the full sized City Scapes dataset. For that we will need
a stronger GPU with enough RAM, like the Nvidia Titan
X for training or the Nvidia DPX2 for the deployment of
the model. Another goal should be to improve the semantic
segmentation by employing better architectures and train-
ing the models to distinguish between object instances.
The methods of semantic segmentation presented in this pa-
per, aren’t limited to the use in context of self driving cars,
but can also be used in a medical context. An application
example is the detection and monitoring of tumors.
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