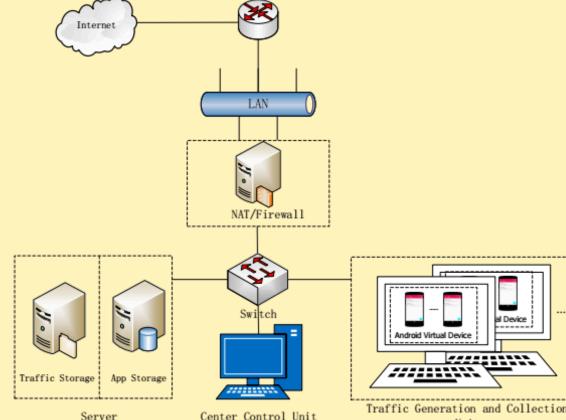

Non-intrusive Detection of Mobile Malware and Botnets PI: Qiben Yan


Project URL: Http://think.unl.edu/crii-research.html

NSF Award #: 1566388

The objective of this project is to develop technologies that will detect mobile malware's malicious network activity at the gateway of a large-scale network, and mitigate the network-wide damage or harm that might be caused by malware apps operating inappropriately or maliciously.

Design of Application Traffic Generator

Automated traffic generation

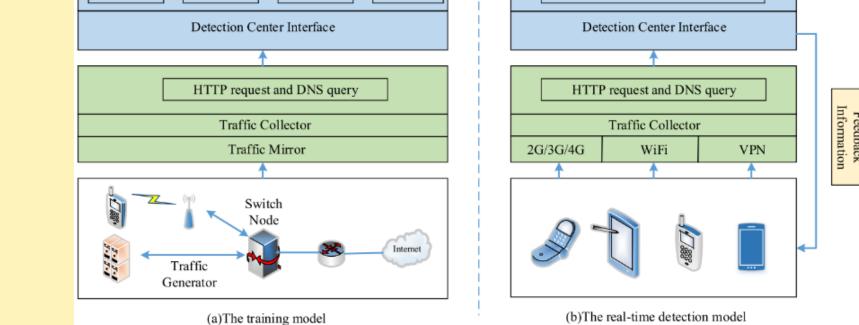
•High performance and scalable framework

•High quality application traffic dataset

Background

Android allows to install applications from uncertified ulletthird party stores

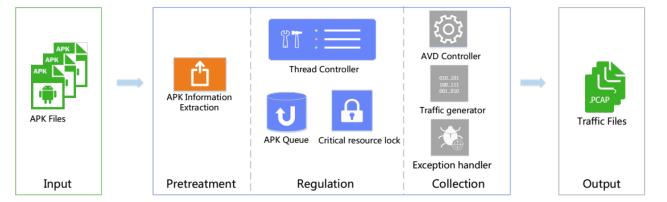
Third-part Scanning Service				Real-time Scanning Service		
URLVoid Service	VirusTotal Service	Micro Trend Service	Other Services	Т	Fraining results	Expert knowle
↑	↑	1	↑		1	1
			↓			
URLVoid Module	VirusTotal Module	Trend Module			Real-time	Module


- 97% of all mobile malicious applications target ulletAndroid^[1]
- A new Android malware appears every 11 seconds^[2] ullet

[1] Forbes Tech,

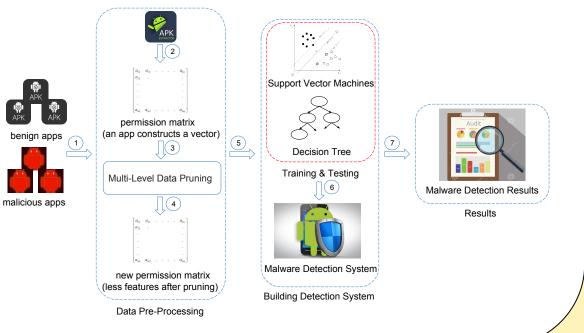
http://www.forbes.com/sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-onandroid-this-is-the-easy-way-you-stay-safe/#3784dff87d53, 2014

[2]GDATA MOBILE MALWARE REPORT,


https://file.gdatasoftware.com/01 public/Presse/Publikationen/Malware Reports/EN/ G DATA MobileMWR Q4 2015 EN.pdf, 2015

Approach

- Mobile malware traffic collection: use program analysis to identify network-related APIs, and to develop triggering mechanisms
 - Identify the HTTP API and corresponding execution path
 - Develop static analysis tools to discover those suspicious HTTP APIs and extract the API call graph
 - Design effective inputs to activate the call graph, which in turn generates malicious network traffic for collection
- **P2P/HTTP botnet detection and mobile botnet** characterization: evaluate the aggregated network behavior from multiple interactive bots
- Network-based mobile malware detection: use data analytics to identify mobile malware in real time using application-layer traffic
 - Extract features related to program execution sequences and the lexical contexts from HTTP/DNS traffic, such as the key value pair information in the HTTP request
 - The extracted traffic features need to be robust and reliable enough to avoid being evaded by smart malware developers
 - The feature extraction and detection mechanism must be efficient enough to be deployed in real time
 - Investigate the evolution of mobile botnet and the relationship between mobile botnet and PC botnet


DroidCollector: Automated Malware Traffic Generator

SigPID: Significant Permission Identification for Android Malware Detection

SigPID:

• Identify significant

DroidCollector:

•Leverages multithreading to perform active and automatic network traffic collection

•Collects 808 MB and 330 MB traffic data generated by 6000 benign apps and 5560 malicious apps in a short period of time

DroidClassier: Adaptive Mining of Application-Layer Header

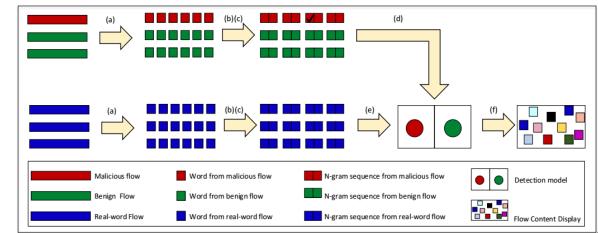
DroidClassifier:

- Multiple HTTP header fields as features
- A novel weighted scorebased metric for malware classification
- Performance is optimized via both supervised and unsupervised learning

58

Training Module **Clustering Module**

Classification and **Detection Module** permissions for real-time malware detection


- Provide Multi-Level Data Pruning (MLDP)
- Perform malware detection using only significant permissions

TextDroid: Semantics-based Detection of Mobile Malware Using Network Flows

TextDroid:

•HTTP flow headers are segmented into words, which are supplied to generate the bag-of-words using an N-gram generation method

•Automatically identifies and extracts the distinguishable features

PI: Qiben Yan, Dept. of Computer Science and Engineering, University of Nebraska Lincoln, Lincoln, Nebraska, Email: <u>yan@unl.edu</u>, Phone: 402-472-5075

National Science Foundation WHERE DISCOVERIES BEGIN

NSF Secure and Trustworthy Cyberspace Inaugural Principal Investigator Meeting

