Non-malleable Digital Lockers for Efficiently Sampleable Distributions

PI: Benjamin Fuller, University of Connecticut

Peter Fenteany, University of Connecticut

Link to project: https://eprint.iacr.org/2018/957

Digital lockers: cryptographic primitive that on construction takes in input key and output value and on use performs as so:

$$L_{val,key}(key') = \begin{cases} val & key' = key \\ \bot & otherwise \end{cases}$$

Point function: a digital locker with a single-bit output (i.e., 0 or 1)

Non-malleable: tamper resistance, can be defined for class of functions or generally for error detection/resistance

Previous results in non-malleable point functions rely on unstable assumptions ([KY18], pictured below) or are not composable ([BMZ19]).

$$O(x;r) = (r, r^{g^{h(x)}})$$

(where $h(x) = x + x^2 + x^3 + x^4$)

Both of these prevent construction of nonmalleable digital lockers.

Few key ideas:

- Obfuscating the bit or symbol (from log sized alphabet)
- Use of other cryptographic primitives (non-malleable codes, seed dependent condensers)

One construction given below

We construct a self-composable non-malleable point function, which allows us to construct non-malleable digital lockers

- Biometric authentication
- Password storage

Goals and Impact: A more private way to perform iris scan authentication

Currently, devices store biometric data of users in full on

lock(val, key), input in $\{0, 1\}^{\lambda+k}$:

- 1. Compute y = cond(val, seed).
- 2. Compute z = Enc(key||y).
- 3. Initialize $\texttt{Out} = \perp$.
- 4. For i = 1 to n compute:
 - (a) Sample random generator
 r_i ← G_{5λ}.
 (b) Compute
 - $egin{aligned} &\gamma_i = (2\mathsf{val} + z_i)^4 + (2\mathsf{val} + z_i)^3 \ &+ (2\mathsf{val} + z_i)^2 + (2\mathsf{val} + z_i). \end{aligned}$

```
(c) Append \texttt{Out} =
\texttt{Out} || (r_i, (r_i)^{g^{\gamma_i}}).
```

5. Output Out.

unlock(val), input in $\{0,1\}^{\lambda}$:

- 1. Compute y = cond(val, seed).
- 2. For i = 1 to n, input r_i, y_i compute:

$$egin{aligned} &\gamma_{i,0} = \sum_{j=1}^4 (2 \mathrm{val})^j \ &\gamma_{i,1} = \sum_{j=1}^4 (2 \mathrm{val} + 1)^j \ &P(x,0,i) = \left(r_i^{g^{\gamma_{i,0}}} \stackrel{?}{=} y_i.
ight), \ &P(x,1,i) = \left(r_i^{g^{\gamma_{i,1}}} \stackrel{?}{=} y_i.
ight) \end{aligned}$$

(a) If P(x, b, i) outputs 1, set $z_i = b$. Otherwise output \perp .

Run decode key' = Dec(z).
 If key'_{k...k+n} ≠ y output ⊥.

Else output $\text{key}'_{0...k-1}$.

Creating and composing nonmalleable digital lockers yields biometric authentication from only small subsets of the whole.

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting) October 28-29, 2019 | Alexandria, Virginia