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Cyberphysical Systems are Ubiquitous

I Found across scales/
sizes
IControlled over a n/w
IRemote attacks

Attack Impact

ICompromised CPS: repercussions
I Information critical to nominal operation must be

safeguarded
I Several instances in last 15–20 years

Opacity: Motivation

ICan an intruder infer a ‘secret’ of the system
based on its observation of the system behavior?
I ‘Secret’ ≡ location, electricity consumption, ...
ICurrent state of the art: opacity for DESs.

Structural Resilience: Motivation

I Square matrix: A =

1 0 2
2 3 0
4 5 6

; rank(A) = 3

IAij , 0→ ∗; Structured matrix: [A] =

∗ 0 ∗
∗ ∗ 0
∗ ∗ ∗


IArbitrarily assign ‘numbers’ to ∗
IRANK (almost) ALWAYS REMAINS THE SAME!
IExtends to several system properties

Research Outline

CPS Security is Important!
INew notion of opacity for CPSs:
I Single adversary: k–ISO
IMultiple adversaries: > 1 notion of decentralized opacity
I Switched Linear Systems: DES opacity + k–ISO
IOpacity in terms of reachable states

I Structural resilience of CPSs to attacks:
IMethod independent of numerical values
IResilience depends on properties of directed and bipartite

graph representations of system
I Establish conditions for resilience to DoS attacks

I Future directions:
IComputing reachable sets efficiently
IControls incurring costs
I Structural resilience of switched systems
I Extension to nonlinear systems

Opacity for Continuous State Systems

XXX

XXX

XXX

XXX

$$$

$$$

IDiscrete-time linear time-invariant system:

x(t + 1) = Ax(t) + Bu(t)
x(0) = x0 ∈ X0

yi(t) = Cix(t); i = 1, 2, . . . , l
IK ⊂ Z+: times at which adversaries observe the

system.
IXs, Xns ⊂ X0: sets of initial secret, nonsecret states.
IQ. When is Xs opaque with respect to Xns, given

observations at k ∈ K?

Opacity: The Single Adversary Case

Definition (Strong k- Initial State Opacity):
Given Xs, Xns ⊆ X0 and k ∈ K, Xs is strongly
k-ISO with respect to Xns if :
∀ (xs(0) ∈ Xs, and admissible controls
us(0), . . . , us(k − 1)),
∃ (xns(0) ∈ Xns, and admissible controls
uns(0), . . . , uns(k − 1)),
such that ys(k) = yns(k).
IAdversary must determine x(0) from snapshots of

output.
Iwill not want to reveal its presence.
Imight not have resources to observe for all time.

Theorem:
IVerifying k-ISO is equivalent to checking

membership of y(k) in a set of states reachable at
time k, starting from Xs and Xns.
I k- ISO (under mild additional assumptions) is

equivalent to output controllability.

Opacity: The Multiple Adversary Case

INotions of decentralized opacity based on:
I Presence/ absence of centralized coordinator
I Presence/ absence of collusion among adversaries

System

Coordinator

Opacity for Switched Linear Systems

IDiscrete-time Switched Linear System:

x(t + 1) = A(Mt)x(t) + B(Mt)u(t)
x(0) = x0 ∈ X0

y(t) = Cx(t)
IMt ∈ {1, . . . , z}: mode at time t
I k := time at which adversary makes observation
I q := number of mode changes
Adversary Goal
IQ. Observes Mk−1, is initial mode a secret mode?

A. (k, q)-Initial Mode Opacity ((k, q)-IMO)
IQ. Observes y(k),Mk−1, did system start from a

secret state and mode?
A. (k, q)-Initial Mode and State Opacity
((k, q)-IMSO)

The Structural Approach

ILarge scale CPS: many states, variables’ values
fluctuate⇒ computational analysis costly.
IUse knowledge of positions of zero/ nonzero

entries of system matrices.
IProperties will hold for almost all valid numerical

realizations.
ILinear structured system:

ẋ(t) = [A]x(t) + [B]u(t)
= [A]x(t) + [Bdef ]udef(t) + [Batt]uatt(t)

IEvery entry in [A] and [B] is either a fixed zero (0)
or a free parameter (∗).
I ([A], [B]) is structurally controllable if there exists an

admissible (A, B) that is controllable.
I ([A], [B]) structurally controllable⇒ almost every
(A, B) is controllable

Structured System as a Graph

I [A]ji , 0⇒ edge (vi⇒ vj)

I (vi→ vj)D([A])⇒
(ui→ wj)B([A])

Im : # right unm. vertices
in a max. matching
Iβ : # non top-linked SCCs

Denial of Service: Structural Resilience

I Inputs in udef(uatt) can only be connected to state
vertices in Xdef(Xatt) ⊂ X

IAttacker blocks uatt⇒ uatt = 0
I STRUCTURALLY, [Batt] = 0
IEnsure resilience to attack by controlling states in
Xdef via [Bdef ]

IStructural resilience: system post-attack is
structurally controllable
IAssume x1, . . . , x6 ∈ Xdef , x7, . . . , x10 ∈ Xatt

(a) Not DoS-resilient (b) DoS-resilient (c) Not DoS-resilient

Figure: Structural Resilience to DoS Attack
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