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Abstract—Wireless Networked Control Systems (NCS) are
increasingly deployed to monitor and control Cyber-Physical
Systems (CPS). To achieve and maintain a desirable level of
performance, NCS face significant challenges posed by the
scarce wireless resource and network dynamics. We consider
NCS consisting of multiple physical plant and digital controller
pairs communicating over a multi-hop wireless network. The
control objective is for the plants to follow the reference
trajectories provided by the controllers. This paper presents
a novel optimization formulation for minimizing the tracking
error introduced due to discretization and packet delays and
losses. The optimization problem maximizes a utility function
that characterizes the relationship between the sampling rate
and the capability of disturbance rejection of the control system.
The constraints represent the wireless network capacity and the
end-to-end delay requirements. The solution to this optimization
problem leads to a joint design of sampling rate adaptation
and network scheduling, which can be naturally deployed over
the existing layered networking systems. Based on a passivity-
based control framework, we show that the proposed cross-layer
design can achieve both stability and performance optimality.
Simulation studies conducted in an integrated simulation envi-
ronment consisting of Matlab/Simulink and ns-2 demonstrate
that our algorithm is able to provide agile and stable sampling
rate adaptation and achieve optimal NCS performance.

Index Terms—wireless networked control system; cross-layer
design; sampling rate adaptation; network scheduling

I. INTRODUCTION

The integration of physical systems through computing and
networking has become a trend, known as Cyber-Physical
Systems (CPS). Many real-world CPS such as automotive
vehicles and distributed robotics, are monitored and controlled
by Networked Control Systems (NCS), where information
among sensors, controllers and actuators is exchanged via
a communication network. NCS are increasingly deployed
over wireless networks, as they provide great convenience in
terms of deployment and mobility support [1], [2]. However
in a wireless networking environment, the stability and perfor-
mance of the control system are greatly affected by its limited
and dynamic resource availability.

Three major approaches have been investigated in literature
to address the challenges in designing wireless NCS. The
first approach, independent of the network protocol design,
investigates the design of the control layer with a goal of
achieving the desired performance despite of the underly-
ing network uncertainties (e.g., [1], [3]). Alternatively, the
network-centric approach focuses on reliable and timely packet
deliveries, independent of the control system. Yet without
the knowledge and support from the other components of

the NCS, these approaches can hardly achieve both stability
and optimal performance simultaneously (e.g., [4], [5]). To
ensure the stability and optimize the performance of a NCS,
co-design of the control system and the networking system
has been investigated where the operation points of these
two systems are coordinated. Existing literature ([6], [7], [8])
either makes simplifying assumptions on the network models
or involves too many interactions between the control and the
networking systems, which prevents efficient layer abstraction
and encapsulation, hindering broader adoption for real-world
deployment.

In this paper, we consider NCS consisting of multiple
physical plant and digital controller pairs communicating
via a multi-hop wireless network, where the plants follow
the reference trajectories provided by the controllers. The
performance of the NCS is characterized by the tracking
errors of the plants which are introduced from two sources: 1)
discretization of the controller and the noise disturbance from
the operating environment and 2) packet delays and losses
caused by network congestion and dynamics. Both sources of
error are related to the sampling rate of the control system.
Intuitively, high sampling rates allow frequent state updates
and provide NCS with better capability to reduce the effect of
environmental disturbances. On the other hand, high sampling
rates increase the network load, which increases the possibility
of packet loss and delay [9] and deteriorates the tracking error.

We transform the NCS performance objective in terms of
tracking error minimization into an optimization problem.
The optimization aims at maximizing a utility function that
characterizes the relationship between the sampling rate and
the capability of disturbance rejection of the control system
(i.e., minimizing the discretization-induced tracking error); and
the constraints of the sampling rate come from the wireless
network capacity and the requirement of packet (i.e., bounding
the network-induced tracking errors). The solution to this
optimization problem leads to a cross-layer design of control
system sampling rate adaptation and network scheduling,
where the sampling rate adaptation determines the bandwidth
demands of the network, and the scheduling at the media ac-
cess control layer resolves the location-dependent interference
and determines the available resource capacity of each wireless
link.

This sample rate optimization problem, however, is non-
trivial to solve. The tight coupling of the sampling rate and
the required delay bound of the control system (i.e., the delay
needs to be less than the sampling time) poses a nonlinear



constraint, which has never been addressed in the existing rate
optimization solutions ([10], [11]). To solve this problem, we
present a coupled-loop approach. In the inner loop, a relaxed
problem, where the delay bound is fixed and independent
of the sampling rate, is solved via dual decomposition. In
particular, a double-price scheme is employed to regulate
the sampling rate traffic demand and the wireless capacity
supply. The capacity price regulates the resource usage at
the wireless link level, and the delay price regulates the rela-
tionship between the achieved packet delay and the required
delay bound at the end-to-end flow level. The control system
then adapts its sampling rate based on its utility function so
that its net profit, which is the difference between the utility
and the cost (product of price and rate), is maximized. The
convergence and optimality of this algorithm is proven. The
outer loop determines the optimal delay bounds progressively
based on the converged sampling rate from the inner loop. The
proposed algorithm naturally leads to a distributed cross-layer
implementation.

The main contributions of this paper are summarized as
follows. First, we present a new formulation for NCS per-
formance optimization by decoupling its performance metric
(tracking error) into two parts – discretization and network
effect, which are formulated into the objective and the con-
straints of an optimization problem respectively. This formu-
lation leads to a cross-layer joint design of sampling rate
adaptation and network scheduling which can be easily de-
ployed on existing control systems and networks. We employ
a control design approach based on passivity, and we formally
prove that the stability and the performance optimality of
NCS can be simultaneously achieved. Second, we present a
distributed algorithm that solves the NCS performance opti-
mization problem and resolves the complex interdependency
between delay and sampling rate. By introducing a novel
Virtual Link Capacity Margin (VLCM) parameter that can be
adjusted to control the delay and the rate over a wireless link,
our solution does not depend on a specific model of packet
arrival processes and is suitable for NCS systems with packet
arrivals that are not characterized as Poisson process (which
is an assumption usually used in networking delay analysis).
Third, our solution is evaluated in an integrated simulation
environment [12] that consists of Matlab and ns-2. Using ns-
2 – a packet-level network simulator that implements all the
details of the network protocol stack, allows highly accurate
evaluation of network effects on the NCS performance, which
is impossible by using Matlab/Simulink alone.

The remainder of this paper is organized as follows. Sec. II
briefly reviews the related works. In Sec. III, we present the
control system model and the wireless network model. In
Sec. IV and V, we formulate the problem of optimal rate
allocation and derive the double-price-based rate adaptation
algorithm. We evaluate the algorithm in different multi-hop
scenarios using our Networked Control System Wind Tunnel
(NCSWT) simulation tool in Sec. VI. We conclude the paper
in Sec. VII.

II. RELATED WORK

Closely related work include the approach presented in [13]
which focuses on compensating for exponentially bounded
long dropout bursts in the network by reconfiguring the con-
troller or the network to guarantee stability. In contrast, our ap-
proach assumes a passivity-based framework by design which
inherently guarantees stability and focuses on the performance
optimization with an integrated design of the controller and
the network. The framework in [14] obtains the controller
behavior from the aggregate computation of different nodes in
the network and it presents a new paradigm that is different
from the classical NCS model, which is considered in our
work. A methodology for determining optimal sampling rates
for feedback loops focusing on WirelessHart networks is
presented in [15] .

Utility functions have been used in [16] to capture the rela-
tionship between the sampling rate and control performance.
However, the optimization problem formulation in [16] leads
to an offline solution which only deals with fixed computing
resources, while our solution is fully distributed and can han-
dle dynamic wireless bandwidth resource. Further, our work
considers the interaction of the sampling rate and the end-to-
end delay experienced by the control systems, which has not
been addressed in the existing rate optimization solutions [10],
[11], [17], [18], [8].

III. PROBLEM DESCRIPTION

Fig. 1. NCS over multi-hop wireless networks

We consider NCS consisting of multiple plants and digital
controllers communicating via a multi-hop wireless network,
as shown in Fig. 1. The objective of the control system is
that the plants follow the reference trajectories provided by
the controllers to complete certain tasks. For example, in a
manufacturing factory, a group of robotic operators perform
the task of moving objects from one place to another. The
network controllers receive desired reference trajectory from
the operators and are responsible for ensuring the movement
of each robot tracks the desired trajectory.

A. Control System Model
A continuous-time plant is described by

ẋp(t) = Apxp(t) +Bpup(t) +Bww(t) (1)
yp(t) = Cpxp(t) (2)



where xp(t) ∈ ℜn denotes the plant state, up(t) ∈ ℜm denotes
the control input, w(t) ∈ ℜm is the disturbance input, and
yp(t) ∈ ℜm is the plant output. Ap, Bp, and Bw define the
plant state matrices and Cp defines the plant output matrix.

The state-space representation of the continuous-time con-
troller is

ẋc(t) = Acxc(t) +Bcuc(t) (3)
yc(t) = Ccxc(t) +Dcuc(t) (4)

where xc(t) ∈ ℜn denotes the controller state, and uc ∈ ℜm

denotes the error signal, or the difference between the plant
output yc(t) ∈ ℜm and the reference signal input r(t) ∈ ℜm.
Ac and Bc define the controller state matrices, while Cc and
Dc define the controller output matrices. Let the reference
signal denote by r(t). The tracking error of the system is

err(t) = r(t)− y(t) (5)

The controller is implemented as a discrete-time control
system. We consider sampling instants tk ∈ R, k = 0, 1...,
with tk+1 > tk, t0 = 0 and we define the sampling interval
as Tk = tk+1 − tk. In order to simplify the notations, let
x(k + 1) represent x(tk+1), the signal x(t) sampled at time
instant tk+1.

B. Wireless Network Model

We model a multi-hop wireless network as a directed graph
G = (V,L), where V is the set of wireless nodes in the
network. The nodes communicate with each other via directed
wireless links l ∈ L. Such a network supports a set of control
systems H . For each NCS h ∈ H , its plant and controller are
deployed on two different nodes in the network. The traffic
from the controller to the plant and the traffic backwards
generate two end-to-end flows denoted as F (h). We collect
all end-to-end flows in the network into set F . An end-to-
end flow f may go through multiple hops in the network and
traverse a sequence of links defined by the routing policy. We
use set L(f) to represent all the links along the route of flow
f and F (l) to denote all the flows that traverse link l.

C. NCS Performance Optimization

Fig. 2. Decompose tracking error based on its source

The NCS performance can be characterized by the tracking
error of the plant systems. The main focus of this paper is
to minimize the tracking error of the NCS deployed over the
multi-hop wireless network while maintaining certain level of
fairness among the plant-controller pairs. As shown in Fig. 2,

there are two main sources of error. When a continuous-
time control system is discretized, its response to environ-
mental disturbances degrades compared to the response of
the idealized continuous system. The level of the degradation
depends on the sampling rate, which determines how well
the digital controller approximates the continuous controller.
High sampling rate allows frequent state updates and thus
provides better capability to reduce the effect of environmental
disturbances and minimize the tracking error. Packet loss and
delay also deteriorate the tracking error. We focus on the
congestion-induced packet loss and delay. Network congestion
appears when the traffic demand overwhelms the capacity
supply. While the sampling rate determines the network traf-
fic demand, the network resource management mechanisms
such as media access control scheduling allocate appropriate
capacity to each wireless links.

Optimizing the NCS performance requires the coordination
between the control system and the networking system. The
control system needs to have the capability to adapt its
sampling rate based on the resource utilization information
from the network. The networking system should schedule
its wireless transmission to meet the resource needs from
the control system. This paper studies how to minimize the
NCS tracking error via joint sampling rate adaptation and
networking scheduling1.

IV. OPTIMIZATION FRAMEWORK FOR TRACKING ERROR
MINIMIZATION

In this section, we present our control system design and
formulate the problem of NCS tracking error minimization as
a sampling rate optimization problem. We first show that our
passivity-based control system design is able to ensure system
stability with time-varying sampling time. Then we define
the optimization objective through a utility function which
characterizes the relationship between the sampling rate and
the capability of disturbance rejection of the control system
(i.e., minimizing the discretionarily-induced tracking errors).
The optimization constraints are based on the wireless network
schedulability and the NCS delay requirement.

A. Passivity-based control system – ensuring system stability
with time-varying sampling time

Fig. 3 shows our passivity-based control system design. A
passive system is defined as a system with bounded output
energy such that the system does not produce more energy
than what was initially stored. We assume the plant system
is either passive. A large class of systems can be “passified”
by adding local control and filter components [19][20]. The
controller Gc(s) is designed so that the plant tracks the
reference r(k) and is also assumed to be passive. The control
architecture uses (1) a discretization approach defined by
the Inner Product Equivalent Sampling and Hold (IPESH)
transform, which is composed by the Inner Product Equivalent
Sampling (IPES) and Zero Order Hold (ZOH) blocks and (2)

1This paper assumes fixed network routing, which is known a priori.



Fig. 3. Passivity Based Control Architecture Over Wireless Networks

a bilinear transform b for converting the control signals into
wave variables for communication over a wireless network.
These transformations ensure that the NCS is passive and
stable in the presence of time-varying delays and packet loss2.
In order to Next, we show that the NCS is ensured with time
varying sampling time, which allows us to use sampling rate
adaptation.

A passive continuous-time linear time invariant (LTI) system
can be converted to a discrete-time passive system at a varying
sampling time, Tk, with the discrete-time state space equations
described as

xp(k + 1) = Φkx(k) + Γku(k) (6)
yp(k) = Cdkx(k) +Ddku(k) (7)

In [22][23], it is shown that in order to obtain a passive
discrete-time equivalent of a LTI passive continuous-time
system for a given fixed sampling time T , the IPESH is used
to compute the system coefficients, Φk, Γk, Cdk and Ddk to
preserve passivity.

The case of discretization with time-varying sampling time
can be deduced by applying the IPESH for each resulting sam-
pling time, Tk, hence ensuring passivity of the discretization
at each sampling instant and thus the overall passivity of the
discrete-time system for a given time interval. This implies
that the new system coefficients are redefined as Φk = Φ(Tk),
Γk = Γ(Tk), Cdk = Cd(Tk) and Ddk = Dd(Tk). By ensuring
the passivity of the discrete-time system, the stability of the
resulting discrete-time system is guaranteed.

B. Utility function - modeling error from discretization

To characterize the impact of sampling rate on tracking
error, we first introduce a utility function based on the compar-
ison of the disturbance rejection capability of the discrete-time
system with its continuous-time counterpart.

1) Continuous-time control system: By [24], the covariance
matrix of the zero-mean white noise process of the continuous-
time system can be defined as

E[w(t)wT (t+ τ)] = Qδ(τ) (8)

2We refer readers to [21], [20] for a detailed description and proofs.

where E denotes the expected value and Q represents the
power spectral density of w, or the continuous-time noise
covariance matrix. The power spectral density can also be
referred to as the “white noise intensity” or mean-square
spectral density. The continuous-time state covariance matrix
Pc can be described by

Pc(t) = E[x(t)xT (t)] (9)

Based on the knowledge of Q, the steady state value of the
state covariance can be obtained by the equation [25]

AclPc + PcAcl +BwclQBT
wcl = 0 (10)

where the matrices Acl and Bwcl denote the closed loop
matrices of the continuous-time system, or the coefficients of
x(t) and w(t) respectively. From the resulting state covariance
matrix, the root mean square of a state can then be determined.
The Root-Mean-Square (RMS) of the plant states is equivalent
to the standard deviation of one of the plant states. For
example, if a system has only one plant state variable xp,
and its plant state covariance is v(xp), the RMS of the plant
state is equal to

√
v(xp). When a system has several plant

state variables, we can use the plant state covariance from one
of them to calculate the RMS of all the plant states.

2) Discrete-time control system: Based on the knowledge
of the continuous-time noise covariance matrix Q, the discrete-
time noise covariance matrix Qd can be obtained using the Van
Loan’s algorithm [24] and can be defined as

Qd =

∫ Tf

0

Φ(τ)BwclQBT
wclΦ

T (τ)dτ (11)

where Φ is the closed loop matrix, or the discrete-time state
coefficient of x(k), and Bwcl denote the closed loop matrix
of the continuous-time system, or the coefficient of x(t).

The steady state discrete-time state covariance matrix can
then be obtained from the following equation

ΦPdΦ
T +Qd = Pd (12)

From the resulting state covariance matrix, the discrete RMS
of the plant state can then be determined in a similar way as
the continuous-time case.

3) Utility function formulation: We now define the utility
function of a control system as a function of its sampling rate
1/T using the ratio of RMS between the discrete-time system
with the continuous-time counterpart. Thus, the utility function
reflects the amount of degradation of the system response
to the white noise compared to the continuous closed loop
system.

U(1/T ) =
RMScontinuous
RMSdiscrete(T )

(13)

To demonstrate the definition of our utility function, we con-
sider a single-input-single-output (SISO) linear-time invariant
(LTI) system, without loss of generality and show its utility
function in Fig. 4. As we could see, the utility function is a
strictly concave function of the sampling rate. The concavity of
the utility function reflects the marginal return on the control
performance when its sampling rate increases.
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Fig. 4. Example utility function for the control system where the transfer
function of the plant is Gp(s) = 1

Js
, the transfer function of the controller

is Gc(s) =
Kp+Kds

s
, where J = 2.93, Kd = 32.1 and Kp = 8.2.

4) Relationship between utility function and tracking error:
In the continuous-time system, considering the closed loop
equations, the system response of the plant can be described
as

x(t) = eAcltx(0) + eAclt

∫ t

0

e−AclτBclr(τ)dτ

+eAclt

∫ t

0

e−AclτBwclw(τ)dτ (14)

y(t) = Ccle
Acltx(0) + Ccle

Aclt

∫ t

0

e−AclτBclr(τ)dτ

−Ccle
Aclt

∫ t

0

e−AclτBwclw(τ)dτ (15)

Recall that the tracking error of the system err(t) = r(t)−
y(t). From (15), the output response of the plant has two main
components that contribute towards the tracking error. The first
component is the plant response to the reference input, r(t),
and the other is the plant response to the disturbance input,
w(t). The passive controller is designed to ensure the plant’s
response to the reference input minimizes the tracking error.
The system achieves a certain level of disturbance rejection.
The contribution of the input disturbance can be characterized
by covariance of the tracking error.

From (15), and the fact that r(t) is not stochastic we have
that E(r(t)yT (t)) = E(r(t)yT (t)) = 0 and E(r(t)rT (t)) =
0. The covariance of the tracking error can be described by

Ce(t) = E[e(t)eT (t)] = E(y(t)yT (t)) (16)

This essentially implies that the covariance of the error is equal
to the output covariance. Based on the knowledge of Q, the
steady state value of the output covariance can be obtained by
the equation [25]

Ce = CclPcC
T
cl (17)

C. Delay and capacity constraints – bounding error from
network

1) Capacity constraint: To limit the effect of packet loss
caused by network congestion on the tracking error, we need
to limit the network load within its capacity. Wireless network
communication is subject to location dependent interference.
Thus the achievable capacity of each wireless link is related
to the scheduling algorithm. We adopt the conflict graph [26]

Fig. 5. Impact of Delay On the NCS Average Tracking Error

concept to model wireless interference. Each vertex in the
conflict graph represents a wireless link of the original network
and there is an edge between two vertices if their corre-
sponding wireless links interfere with each other. The com-
munications along wireless links are scheduled on a slotted
time basis. In each time slot, one independent set3 I of the
conflict graph is selected and only the links corresponding
to the vertices in I are allowed to transmit because they
are interference free. Let cl be the channel capacity. A L-
dimension column vector rI is used to represent the capacity
vector of I , where rIl = cl if l ∈ I , and rIl = 0 otherwise. We
adopt the model of feasible capacity region Λ as introduced
in [27] to model the feasible link capacity allocation. The
feasible capacity region is a convex hull, which is defined as
Λ :=

∑
I αIr

I , where
∑

I αI = 1 and αI ≥ 0. Scheduling
essentially determines the capacity allocation ĉ = (ĉl, l ∈ L)
of the links, where ĉl is the average capacity over time based
on the scheduling. Obviously, ĉ ∈ Λ. To limit the packet
congestion losses, the aggregated traffic load on any wireless
link l ∈ L should be no more than its achievable capacity ĉl.

2) Delay effect on tracking error: To determine the effect
of delay on the tracking error, we perform a set of simulation
studies using NCSWT [12] over a NCS with one pair of
plant and controller. Based on the assumption that the discrete
plant/controller systems update and process data received only
at sampling instants, the delays viewed from the control
systems’ perspective are integral multiple of the sampling
interval. We vary the sampling time and manually introduce
delays which are integral multiples of the sampling time. Then
we evaluate the average tracking error difference, which is the
difference between the time-averaged tracking error with delay
introduced and that without any delay.

From the experiment, we observe that when the delay is
within one sampling time, the tracking error difference remains
zero. Fig. 5 shows the effect of delay on the tracking error
difference when it is larger than the sampling time. We observe
that the error increases superlinearly when the delay increases
beyond one sampling time. Based on this observation, we
bound the average end-to-end delay of control system flows
to their system sampling time.

3The independent set of a graph is a set of vertices within which no edge
exists between any two vertices.



3) Controlling delay with V LCM : Providing delay as-
surance is notoriously difficult in wireless networks. The
main difficulty comes from the complex interactions between
traffic arrival and departure, which is shaped by the network
scheduling. Most of the existing works on delay analysis
make explicit assumptions on the packet arrival process (e.g.,
Poisson arrivals) [28], which do not reflect the NCS traffic
characteristics. Here we look for a general delay control
method which is not limited to a predefined packet arrival
process. In particular, we introduce a parameter Virtual Link
Capacity Margin (V LCM) σl of link l defined as follows, to
limit the maximum allowable rate ml.

σl = ĉl −ml, with ml < ĉl,∀l ∈ L (18)

We regard the link delay (i.e., average packet delay along the
link) as a function of the virtual link capacity margin φ(σl).
Then the average delay of flow f is the sum of all link delays
along its route.

D. Optimization Framework

Recall that each control system is associated with two
flows. Let zh = sample size

Th
be the traffic rate of one flow

for the control system h, where sample size is the size
of the sample and Th is its sampling time. And Th(f) is
the sampling time of control system h which flow f is
associated with. Thus, the maximum allowable rate satisfies
ml ≥

∑
h∈H:f∈F (h)&f∈F (l) zh. We overload Uh as a function

of traffic rate for control system h, as defined by Eq. (13). Now
we formulate the optimal sampling rate allocation problem as
follows:

W : max
∑
h∈H

Uh(zh) (19)

s.t.
∑

h∈H:f∈F (h)∩F (l)

zh ≤ ĉl − σl,∀l ∈ L (20)

∑
l∈L(f)

φ(σl) ≤ Th(f),∀f ∈ F (21)

over ĉ ∈ Λ (22)

The objective of the nonlinear problem is to maximize the
aggregate utility of all control systems in the network. This ob-
jective minimizes the tracking error induced by discretization
and maintains certain fairness among all the plant-controller
pairs [29]. Inequality (20) represents the wireless capacity
constraint for each wireless link. Note that the V LCM σl

is introduced here to control the link delay. Inequality (22)
defines the scheduling feasibility. Inequality (21) is the flow
delay constraint where the average flow delay is bounded by
the sampling interval of its control system. It is important
to note that there is a possibility that the optimal solution
of sampling time that minimizes the tracking error may fall
below the delay bound. We choose to incorporate this delay
bound (21) in our problem formulation for two reasons. First,
from Fig. 5, we observe that the tracking error increases
super-linearly with respect to delay when the delay goes

beyond the sampling time; while the utility only increases
sub-linearly with respect to sampling rate. Intuitively, this
implies the marginal benefit of increasing the sampling rate
is overweighed by the marginal penalty of pushing the delay
beyond the sampling time. Based on this intuition, we bound
the average delay by the sampling period. On the other hand,
without this delay bound constraint, providing a formulation
that fully captures the complex interaction among sampling
time/rate, delay, delay-introduced error, and discretization-
introduced error will lead to an intractable optimization prob-
lem, where identifying a distributed solution is even harder.

V. DISTRIBUTED CROSS-LAYER ALGORITHM

A. Solution overview

Problem W is non-trivial due to the complicated interactions
between the V LCMs, the sampling rates and the end-to-
end delays. The tight coupling of the sampling rate and the
required delay bound of the control system (i.e., the delay
needs to be less than the sampling time) poses a nonlinear
constraint, which has never been addressed in the existing
rate optimization solutions ([10], [11], [30]). To solve this
problem, we first relax the delay constraint and consider the
optimization problem with a fixed delay requirement. Then
we show how to adjust the delay requirement to achieve the
optimal solution of the original problem W .

B. Cross-layer algorithm with fixed delay

The optimization framework with a fixed delay requirement
can be written as

W1 : max
∑
h∈H

Uh(zh) (23)

s.t.
∑

h∈H:f∈F (h)∩F (l)

zh ≤ ĉl − σl,∀l ∈ L (24)

∑
l∈L(f)

φ(σl) ≤ Dh(f),∀f ∈ F (25)

over ĉ ∈ Λ (26)

where the constraint (21) is replaced by (25), in which Dh(f)

is the delay requirement of control system h.
1) Double-Price Algorithm: Direct solution to W1 re-

quires global coordination of all network components, such
as flows, and links, which is computationally expensive. We
consider its dual decomposition. Let ν = {νl, l ∈ L} and
µ = {µf , f ∈ F} be the Lagrange multipliers with respect
to constraints (24) and (25) respectively. The Lagrangian of
(23) is:

L(z,ν,σ,µ, ĉ)
=

∑
h∈H

Uh(zh)−
∑
l∈L

[νlσl +
∑

f∈F (l)

φ(σl)µf ]

−
∑
h∈H

zh(
∑

l∈L(f)&f∈F (h)

νl) +
∑
f∈F

µfDh(f) +
∑
l∈L

νlĉl

The dual of W1 is

D̄(ν,µ) = min
ν≥0,µ≥0

D(ν,µ) (27)



where

D(ν,µ) (28)
= max

z,σ,ĉ
L(z,ν,σ,µ, ĉ)

= max
σ

−
∑
l∈L

[νlσl +
∑

f∈F (l)

φ(σl)µf ]


+max

z

∑
h∈H

[Uh(zh)− zh
∑

l∈L(f)&f∈F (h)

νl]


+max

ĉ

{∑
l∈L

νlĉl

}
+

∑
f∈F

µfDh(f)

The solution (z∗,σ∗, ĉ∗) to (28) should satisfy:

z∗h = argmax
zh

∑
h∈H

Uh(zh)− zh
∑

l∈L(f)&f∈F (h)

νl


(29)

σ∗
l = argmax

σl

−
∑
l∈L

 ∑
f∈F (l)

φ(σl)µf + νlσl

 (30)

ĉ∗l = argmax
ĉl∈Λ

(
∑
l∈L

νlĉl) (31)

Here the multiplier νl can be seen as the implicit congestion
price [30] of link l, which represents the cost of delivering a
unit of data through link l. The multiplier µf can be interpreted
as the implicit delay price of flow f , which represents the cost
of imposing a unit of delay on flow f . If ν and µ are given, we
can obtain the maximizers z∗h and σ∗

l by taking the derivative
with respect to zh and σl respectively.

z∗h(κh) = U
′−1
h (κh), with κh =

∑
l∈L(f)&f∈F (h)

νl,∀h ∈ H

(32)

σ∗
l (λl, νl) = φ

′−1
l (

−νl
λl

), with λl =
∑

f∈F (l)

µf ,∀l ∈ L (33)

(32) implies that the optimal sampling rate of a control system
h is determined by its price κh, which is the aggregated
price of the link along its flow routes. (33) implies that the
optimal V LCM of a link is relevant to its congestion price νl
and link margin price λl. The intuition is: 1) the congestion
price determines the available capacity margin that can be
used for V LCM adjustment; and 2) the link margin price
implicitly reflects the overall delay requirement (from all of
its supporting flow delay requirement) on its V LCM . The
maximizer ĉ∗l can be generated from a maximum weight based
scheduling policy, which will be discussed later.

Now W1 is converted into three sub-problems: the sampling
rate adaptation problem (29), the VLCM assignment problem

(30) and the scheduling problem (31). The link congestion
price ν and the flow delay price µ can be computed iteratively,
from the opposite direction to the gradient ∇(L(ν,µ)) [31].

This adaptation approach is called double-price scheme.
Based on the information of two price signals, the algo-
rithm iteratively reach a global optimum. The property of
this algorithm is formally characterized in Proposition 1 and
Proposition 2.

Proposition 1 There is no duality gap between (23) and
(27). For any (ν∗,µ∗) that minimizes (28), if (z∗,σ∗, ĉ∗)
solves (29), then (z∗,σ∗, ĉ∗) is the unique maximizer of (19).

Proposition 2 If ||β||2 and ||γ||2 are sufficiently small,
starting from any initial values z(0), σ(0), ĉ(0) and prices
ν(0) ≥ 0, µ(0) ≥ 0, the cross-layer algorithm converges to
the optimal solution (z∗,σ∗, ĉ∗,ν∗,µ∗). 4.

Fig. 6. NCS over multi-hop wireless networks

2) Cross-Layer Rate Allocation Implementation: Our algo-
rithm naturally leads to a cross-layer implementation via joint
VLCM assignment, sampling rate adaptation and scheduling,
as shown in Fig. 6. Scheduling is performed at the MAC layer.
At the network layer, the margin calculation generates the
optimal VLCMs for a wireless interface queue; the congestion
price calculation provides per-hop congestion price, which
reflects the level of congestion at this queue. They can be
implemented as part of the queue management mechanism.
At the application layer, the per-hop congestion price is
aggregated to calculate the sampling rate; the end-to-end delay
is measured to calculate the delay price.

Our algorithm implementation only requires the knowledge
of the first order derivative of the link delay with respect to
the capacity margin ∂φ(σl)

σl
, based on (33), rather than some

statistical characteristics, like mean or variance of the packet
arrival rate. The derivative of link delay can be profiled online.
According to (31), we need to find a scheduling policy so that
the aggregate link weight

∑
l∈L zlĉl could be maximized. We

achieve this by using a maximum matching based scheduling
policy [30].

4Due to spacelimitations, the proof of these two propositions are provided
in our report [32]



C. Solution with Delay Bound Tuning

With the optimal sampling rate adaptation solution to the
problem W1 with fixed delay requirement obtained, we now
solve the original optimal problem W by determining the
optimal delay requirements for all control systems. We proceed
in two steps. First we will determine the ranges of delay re-
quirements. Then, we adjust the delay requirements to find the
optimal ones which yield the optimal sampling rate allocation
within the range.

1) Determine range of delay requirement: The lower bound
Dl = (Dh, h ∈ H) of the delay range can be computed via
the optimization problem of

W l : max
∑
h∈H

Uh(zh) (34)

s.t.
∑

h∈H:f∈F (l)&f∈F (h)

zh ≤ ĉl,∀l ∈ L (35)

over ĉ ∈ Λ (36)

This is a simplified form of W , with the V LCM σl = 0 and
without the delay constraints. The solution of this problem zl

is the maximum achievable sampling rate considering only
the network capacity constraint. This maximum achievable
rate corresponds to the minimum sampling time of the control
system Th(z

l
h). As our delay constraint in the original problem

W is that the flow delay should not exceed one sampling time,
we can treat the minimum sampling time as the lower delay
bound Dl = (Th(z

l
h), h ∈ H).

With the sampling rate of zl, the maximum amount of
traffic with only network capacity constraint is injected into
the network. Thus the measured end-to-end delay dl =
(dlf , f ∈ F ) is the upper bound of the end-to-end delay. If
dlf ≤ Th(z

l
h),∀f ∈ F (h),∀h ∈ H , then zl will also be the

optimal sampling rate for the original problem W . If there
exists dlf > Th(z

l
h), then we set the upper bound of the delay

requirement to Du = dl.
2) Optimal delay requirement adjustment: Starting from the

lower bound of the delay requirement, we adjust the delay
requirement of each control system based on the algorithm
shown in Table I. In the algorithm, we gradually increase the
delay requirement of each system h from its lower bound until
1) it is smaller than the corresponding optimal sampling time
based on problem W1 but within a constant bound ϵ; or 2)
it exceeds the corresponding optimal sampling time. In the
latter case, we restore the delay requirement to its last value
and reduce the adjustment size from ah/mh to ah/(mh +1),
where mh is initialized to 1.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our cross-layer sampling rate
adaptation and network scheduling algorithm using an in-
tegrated simulation tool named Networked Control System
Wind-Tunnel (NCSWT) [12]. NCSWT integrates two sim-
ulators Matlab and ns-2. Based on the HLA standard, the
tool allows us to simulate the control system models in Mat-
lab/Simlink and the networking systems in ns-2. Using ns-2, a

TABLE I
DELAY REQUIREMENT ADJUSTMENT

Adjustment of Delay Requirement Dh

0) initialization
∀h,mh = 1, Dh = Dl

h
let ah be the initial adjustment size, ϵ be a sufficiently small constant;

1) compute zh by solving W1 where the delay requirements are Dh;
derive the corresponding sampling time Th(zh);
If ∀h, 0 ≤ Th(zh)−Dh ≤ ϵ, stop;

(Dh, h ∈ H) is the optimal delay requirements.
2) If ∃h,Dh < Th(zh)− ϵ, increase its delay requirement:

Dh = Dh + ah/mh

3) If ∃h,Dh > Th(zh), decrease the delay requirement:
Dh = Dh − ah/mh

and reduce the adjustment size:
mh = mh + 1

repeat 1) to 3)

packet-level network simulator that implements all the details
of the network protocol stack, we can perform highly accurate
evaluation of the network effects on the NCS performance,
including queueing delays and network scheduling, which is
impossible by using Matlab/Simulink alone.

A. Simulation Setup

In our experiments, the control systems consist of three
pairs of plants and controllers. Each of the three plant systems
used in the experiments is the model of a single joint of
a robotic arm. They are described by the continuous time
state space representation as defined in (1) and (2), with the
parameters Ap = 0, Bp = 1, Cp = 0.3413. Each of the
controllers can be defined by the continuous time state space
representation as defined in (3) and (4) with the parameters
Ac = 0, Bc = 1, Cc = 32.1, Dc = 8.2. The plants and
controllers are discretized based on the sampling interval, Th

defined by the network, to obtain the discrete time equivalent
of the systems for each sampling interval. The utility function
used in the experiments is the same as the function presented
in Section III. The objective of the systems is for the joint
velocity of each robotic arm to track a sinusoidal reference
input r[k] = sin(ωk) for k = 0, 1, 2, · · · with ω = 2π

80 . The
disturbance inputs for Plant2 and Plant3 are white noise with
the power spectral density of 1. For comparison, Plant 1 does
not have any white noise input. In the wireless network, the
interference range and the transmission range are set to 250m.
The capacity of the wireless channel is 2Mbps. The packet
size is 260 bytes. Each simulation runs for 180 seconds.

Four aspects of the system are evaluated after the first period
of the reference signal when the adaptation converges:

1) The average tracking error ērr, which is the average
absolute difference between the plant output and its
reference signal.

2) The converged sampling time Th.
3) The end-to-end delays of the flows associated with

system h.
4) The channel utilization, which is the ratio of the total

network load to the channel capacity.



The first two metrics evaluate the performance of the NCS,
and the last two evaluate the performance of the networking
system.

B. Simulation Results

1) Single-hop Scenario: In the first experiment, there are
six nodes in the wireless network, each hosting either a plant
or a controller. All the nodes are within the transmission range
of each other, forming a single-hop network topology.
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Fig. 7. Velocity Outputs with the Optimal Delay Requirement in Single-hop

Fig. 7 presents the simulation results with the optimal delay
requirement derived from the delay requirement adjustment
algorithm. Fig. 7(a) shows the plant outputs, and Fig. 7(b)
illustrates the sampling time convergence of the three plant-
controller pairs. The sampling time quickly converges, and the
plant outputs closely follow the reference trajectory. In Plant2
and Plant3, white noise appears every 15 seconds. The outputs
deviate from the reference trajectory, while their differences
quickly diminish after a short period of time.
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Fig. 8. Velocity Outputs with Different Delay Requirements in Single-hop

TABLE II
PERFORMANCE METRICS FOR DIFFERENT DELAY REQUIREMENTS

Delay Average Sampling Average Channel
Requirements Track Error Time Delay Utilization

Optimal 0.0069 0.0125 0.0121 50 %
0.05 0.0251 0.0087 0.0481 72 %

0.0085 0.0428 0.2013 0.0087 3 %

Next we compare the performance of the NCS with fixed
delay requirements, which are different from the optimal one.
Tab. II lists the values of the performance metrics. Fig. 8(a)
illustrates the plant outputs using the delay requirement of
0.05s, and Fig. 8(b) demonstrates the plant outputs using the
delay requirement of 0.0085s. We observe that both outputs
are much worse than those in Fig. 7. In addition in Fig. 8(b),

Plant2 and Plant3 suffer from larger oscillations than Plant1,
and cannot track the reference trajectory closely. With a
larger delay requirement, the control systems are allowed to
send packets with a larger sampling rate, which increases the
traffic load of the networks. The average end-to-end delay
experienced by the control systems is more than 5 times of the
sampling time. Thus, the outputs exhibit a lot of oscillation.
On the other hand, a small delay requirement leads to small
sampling rates, which degrades the system capability of white
noise rejection. Thus, the controller cannot be notified in time
about the occurrence of the white noise disturbance.

2) Multi-hop Scenario: Direct communication in wireless
networks requires two nodes within the transmission range of
each other. When they are out of range, intermediate nodes
can provide relays to route packets. We evaluate our solution
over a multi-hop wireless network with 12 nodes organized in
a grid topology. The plants and controllers are deployed on
nodes at the network edges. Plant2 resides in the middle of
the network. The paths of all the control system pairs are set
up using the shortest-path routing algorithm.

TABLE III
PERFORMANCE METRICS WITH OPTIMAL REQUIREMENTS

Delay Average Sampling Average
Requirements Track Error Time Delay

Plant1 0.024 0.0020 0.026 0.031
Plant2 0.035 0.0186 0.038 0.048
Plant3 0.024 0.0120 0.026 0.023

Fig. 9(a) shows the velocity outputs of the three plants
with the optimal delay requirements, and Tab. III compares
their performance metrics. Compared with the single hop case,
the plants experience larger oscillation at the beginning of
the simulation. Because it takes longer time to setup the
routes between the plant and controller pairs. Plant1 does
not have white noise disturbance, so after convergence its
velocity output exactly follows the reference signal. Although
Plant2 and Plant3 have the same amount of white noise input,
Plant2 has larger oscillation than Plant3. As the flow of Plant2
experiences more interference than those of Plant3, it has a
larger delay requirement and is more vulnerable to noise with
a larger sampling time.

TABLE IV
PERFORMANCE METRICS OF THE NCS WITH FIXED RATES

Average Sampling Average
Track Error Time Delay

Plant1 0.0132 0.0117 0.0807
Plant2 0.0223 0.0176 0.2044
Plant3 0.0139 0.0117 0.0519

We further run the experiment with fixed sampling time for
the three control systems. In Tab. IV, we compare the average
tracking error with fixed sampling time and that with the
optimal delay requirements. We observe that the three plants
experience larger tracking error. Their sampling rates are about
twice of those under the optimal delay requirements, which
leads to much longer delay in a multi-hop network. When



the average delay exceeds the sampling time by a number of
times, the tracking error increases significantly.
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Fig. 9. (a) Multi-hop Wireless Network (b) Single-hop wireless network
with 10% packet loss

3) With wireless random packet loss: We now set up a
single-hop wireless network with 10% random packet loss that
may be caused by wireless interference or noise. In Fig. 9(b),
we show the velocity outputs of the three plants with the
optimal delay requirements. Compared with the no loss case,
the plant outputs experience slightly larger oscillation, but still
are able to track the reference closely.

VII. CONCLUSION

This paper investigates the problem of NCS performance
optimization in terms of tracking error minimization. It
presents an optimization formulation where the objective is to
maximize a utility function that characterizes the relationship
between the sampling rate and the capability of disturbance
rejection of the control system and the constraints come from
the wireless network capacity and the requirement of packet. A
distributed double-price-based algorithm is presented to solve
the problem. Our solution has desired properties from both
theoretical and practical aspects. From theoretical perspective,
it is shown to achieve both system stability and performance
optimality. From the view of practice, it can be naturally
deployed over the existing layered networking systems with
well-defined cross-layer interactions. Simulation studies con-
ducted in an integrated simulation environment consisting of
Matlab/Simulink and ns-2 demonstrate that our algorithm is
able to provide agile and stable sampling rate adaptation and
achieve optimal NCS performance.
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