Optimal Design of Robust Compliant Actuators for Ubiquitous Co-Robots

Robert Gregg (Michigan/Lead PI), Siavash Rezazadeh (Denver Co-PI), Elliott Rouse (Michigan PI)

Key problems to address:

Framework for nonlinear springs acknowledging uncertainty

Achieve global solutions in polynomial-time

Solution independent of initial conditions

Avoid overdesign or underdesign resulting from safety factors

Challenge: Use series elasticity to minimize energy consumption and satisfy actuator constraints despite uncertainty

Series Elastic Actuator (SEA)

Scientific Impact:

Formulate spring design of SEAs as a convex program

Framework to guarantee performance in uncertain environments

Bridge robust optimization and mechatronic design

Robust Convex Optimization Program

Motor energy consumption (x: Spring compliance vector)

minimize $\frac{1}{2}x^TQx + q^Tx + c$ subject to $Ax \le b, \forall A, b \in \mathcal{U}$

Constraints

Motor torque Motor velocity Spring elongation

Uncertainty

Load kinematics
Load kinetics
Unmodeled dynamics
Spring manufacturing

Experimental Testbed

Rotational Springs can connect in parallel to modify stiffness

Simulation Results

Simulation results: SEA for a powered prosthetic ankle. Not too rigid, not too soft to guarantee actuator constraints. (Nominal: 217.4 N·m/rad, Robust: 243.4 N·m/rad)

Senior design project – UT Dallas

Open Source Leg – U. Michigan

