PARP: Mislead Physical-Disruption Attacks by Preemptive Anti-Reconnaissance for Power Grids' Cyber-Physical Infrastructures

Attack Target:

Dummy

PARP

Kingston

THE UNIVERSITY OF RHODE ISLAND

Challenge:

 Adversaries perform in-depth reconnaissance, leading to irreversible damage

 How to mislead stealthy reconnaissance relying on legitimate operations

 How to craft misleading physical data

Solution:

PARP, the first Preemptive
 Anti-Reconnaissance that
 will mislead adversaries
 about Power grids'
 cyber-physical infrastructures

• Technical approaches:

 Control Function Virtualization (CFV), neutralizing communication pattern that can pinpoint physical device

Providence

 Electrical-Model-Guided Adversarial Generative Networks (EleGAN), crafting decoy physical data conforming to power grids' physical models

Scientific Impact:

 Mislead attacks before malicious activities are launched, removing potential threats in advance

 Covering a wide spectrum of attacks including unknown ones by disrupting reconnaissance on physical data

Broader Impact & Broader Participation:

 Benefit a wide range of ICS environments

- Apply PARP to broader security problems that rely on extensive data for preparation, e.g., attacks driven by AI
- Advance two ICS security courses created and taught by the PI
- Reform hybrid education for existing and future workforce

PI: Hui Lin, huilin@uri.edu

Institution: University of Rhode Island

Award #: 2144513