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Tony Lin 

Human Interaction with the Autonomous Vehicle 

Mentor: David Käthner, Deutsches Zentrum für Luft- und Raumfahrt 

 

1. General Problem and Context 

Today there is a disconnect between connected autonomous vehicles (CAVs) and humans. For 

most people, the technology is a black box, and lack of understanding naturally leads to 

distrust. This is highly problematic because if the general population does not trust this 

technology, lawmakers would be less inclined to legalize CAVs for the road. This would mean 

reduced profits, and companies could lose the incentive to continue working in this area. Thus, 

the problem is creating trust such that both the general population and policymakers will 

understand enough to feel comfortable accepting connected autonomous vehicles. This would 

mean designing a system that is both transparent and secure in order to adapt to varying levels 

of scrutiny.  

Some of the factors creators of connected autonomous vehicles need to account for 

include ethics, accounting for what the car would do when about to enter into an accident, 

privacy, masking data or collecting only certain data, transparency, letting users know what the 

car is doing, and giving users full control when requested. This report will focus more on solving 

the transparency and ethics issues by offering clear communication between the vehicle and 

user. 
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2. Description of the Specific Human-cyberphysical System Problem 

Building trust between humans and cyberphysical systems boils down to understanding human 

psychology and designing systems that address human concerns. One way to understand the 

human mentality when driving is to analyze the eye movements of drivers. Eye movements 

reveal a lot about what humans are worried about in specific moments. For example, when 

doing a lane change, a human might tend to look more toward his or her left/right mirrors to 

check for incoming cars. A human might also look more at his or her speedometer when driving 

in an urban area. If one can successfully determine what concerns a human most in certain 

situations and build an interface that allows the car to communicate to the user that it is aware 

of the situation and will handle it in a safe manner, the amount of trust between CAVs and the 

general population will greatly improve. Thus, the specific human-cyberphysical problem this 

report covers is gaining important information from human driving behavior, with an emphasis 

on eye movement data. 

 

3. The Challenges of Reaching a Functional System 

Some of the challenges involved with reaching a functional system include acquiring unbiased, 

strong data for analyzing human behavior. Having misleading data could lead to misleading 

results, which might lead to poor interface design and to people becoming less accepting of 

CAVs. Another challenge would be making this interface universally friendly. People from 

different areas and backgrounds might yield widely different results, leading to adaptability 

issues. Overall, one is hopefully able to standardize this interface just as the manual car control 

system has been standardized. Another challenge would be meeting ideal expectations within 
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engineering limits. If the data analysis reveals something that humans are apprehensive about, 

such as hitting a deer in the middle of the night, the self-driving car may not be able to fully 

handle this fear. Certain factors are simply out of reach for today’s technology, and this is a 

challenge for designers, who should develop a transparent interface between the vehicle and 

the user. There are many more potential challenges associated with this system, and the best 

way to narrow the scope would be to analyze human driving behavioral data and see what the 

results are. 

 

4. The Technical Problem and the Research Setting 

The research took place at the German Aerospace Center (Deutsches Zentrum für Luft- und 

Raumfahrt) under the Institute for Transportation Systems under the supervision of David 

Käthner. My supervisor obtained several datasets by placing eye trackers on a driving simulator 

and having the participants go through several driving scenarios such as changing lanes on the 

highway, driving through an urban area, and driving on a plain road. The technical problem was 

to take the data and find revealing information. As a result, the first step was figuring out how 

to best analyze eye tracking data. Unsurprisingly, modeling eye movement is a huge area of 

research and there are several important distinctions. A fixation is generally defined as a pause 

in eye movement for the human to concentrate somewhere, whereas a saccade is rapid eye 

movement that occurs when the human eyes move between fixations. The first technical 

problem is separating between these two eye movements. By analyzing their angular 

movement features and comparing the movements to threshold values gained from previous 

studies, a mostly clear separation was made between the two. From these two distinctions, one 
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generally wants to detect areas of interest (AOIs), which are places that the human looks at 

over time based on a number of fixations. AOIs are important because they convey what the 

human is most concerned about when driving. Having this information can directly tell us what 

a self-driving car should communicate when driving in a certain scenario. Thus, the best way to 

find revealing information is to accurately classify AOIs.  

The design approach is to use unsupervised learning to obtain a data-based method for 

determining AOIs. In previous research, AOIs were frequently pre-defined with pre-set 

boundaries. This led to a lot of inaccuracies because experiments frequently did not conform to 

expectations. Thus, using previous data to learn about more accurate boundaries led to a more 

robust model. Unsupervised learning models specifically used are the Gaussian Mixture Model 

(GMM) and the custom iterative KMeans algorithm. The custom iterative KMeans model would 

loop through the entire dataset, collapsing a set time frame into a window of 2-D positional 

coordinates, and run the KMeans model several times on this map, with different starting 

parameters. By have changing parameters, particularly the number of clusters to search for, 

one can find an optimal solution by utilizing the elbow curve, which plots the accuracy score 

with respect to the number of input clusters. This would allow one to select the number of 

clusters that will not overfit or underfit the data. Both yielded promising results: the GMM was 

faster, but the KMeans method offered a deeper look into the data. The Kmeans method does 

iterate through the entire dataset, and it is also better for real time analysis.  

The result is a way to distinctly classify different AOIs from one another. For example, 

the driving simulation had 5 AOIs with the left mirror, right mirror, speedometer, main window, 

and the display pad, which acted as a distraction humans tend to face when driving, i.e. the 
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radio. The method successfully made a distinction between all five, although the exact level of 

success depended on how the parameters were set up. As a result, this allows data scientists to 

classify a positional eye data point as being a fixation and to determine what area of interest 

this fixation contributes to. By having these as features, data scientists can now much more 

clearly see what concerns a human the most when driving in certain scenarios. This allows for 

more robust analysis, particularly with supervised learning and can reveal a lot of information 

about human driving behavior, necessary for effective communication between CAVs and 

users. 

 

5. Future Research  

In terms of the social aspect, trust is the main issue and needs to be built up over time. Tech 

companies and research facilities need to openly communicate their intentions and get society 

used to the fact that self-driving cars represent the future. This would not only increase 

potential revenue from the market but also increase the likelihood that policy is passed. Future 

research can be done in the human-cyberphysical interaction aspect by finding more ways to 

remove the black box between humans and self-driving technology. The interface itself needs 

specifications and could range from a display screen to certain warning lights on important car 

components. This would mean trying out different designs and running experiments to see 

what system humans find most transparent and trustworthy.  
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Saatvik Mohan 

Decision Making in Smart Grid Cybersecurity 

Mentor: Mathias Uslar, OFFIS 

 

 

1. Problem and Context 

 The world is in the midst of a major transformation in electric power infrastructure, 

which affects not only governments and businesses but also homes and individuals. In order to 

increase efficiency, security, and privacy, there must be a concerted effort to understand and 

communicate fully the risks associated with different systems and the smart grid as a whole 

(NIST 2014).  

With respect to efficiency, a lack of information for the players of the smart grid 

(governments, utilities, and businesses) leads to poor decisions by all parties. Therefore, in 

order to ensure that the smart grid functions efficiently, all players must be privy to the same 

total information. Moreover, security is important because the modern economy cannot 

function without proper availability and integrity in the power infrastructure. Equally important 

are the social and ethical implications of security. Without reliable energy, the most at-risk 

individuals and institutions of society will be affected the most. The result is energy poverty, a 

situation where the poorest individuals have the least access to power and are more likely to 

remain in poverty as a result of being unconnected (Nussbaumer et al. 2012).  This issue is 

international, with stunted economic growth in areas with unreliable energy. 
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Finally, privacy is an issue that is becoming more and more pressing in a modern smart 

grid. Now that information-collection has become incredibly accurate, there must be effective 

strategies in place to protect smart grid-related data. The legal implications of breaches  of 

privacy, especially in terms of smart meters, have been well-documented and have attracted 

organized advocacy groups. Although there are other concerns about the health risks, the 

majority of the opposition is aimed at the “pervasive anger at being forced to accept devices 

that can report on activities by appliance in a household” (Hess 2014). There should be 

expected privacy issues coming to the forefront of international conversation beyond the smart 

meter issue. 

 

2. The Specific Human-Cyberphysical Problem 

 The specific human-cyberphysical problem in my project was how decision makers view 

the risks associated with different systems or types of systems. With more comprehensive and 

accurate knowledge, smart systems can better decide where to allocate resources for security. 

Not only have systems within the smart grid become more interdependent, there are an 

increased number of vulnerable entry points and more data that can be stolen. My project 

draws upon Guidelines for Smart Grid Cybersecurity, a comprehensive, three-volume, advisory 

report published by the National Institute of Standards and Technology (NIST) and the 

European Union’s Smart Grid Information Security.  

The NIST report presents “an analytical framework that organizations can use to 

develop effective cybersecurity strategies tailored to their particular combinations of smart 

grid-related characteristics, risks, and vulnerabilities” (National Institute of Standards and 
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Technology 2014). The primary goal of the report is to develop a high-level set of cybersecurity 

requirements that can be used by all stakeholders in the smart grid. As technology has evolved, 

so has cybersecurity. Cybersecurity must now address “not only deliberate attacks launched by 

disgruntled employees, agents of industrial espionage, and terrorists, but also inadvertent 

compromises of the information infrastructure due to user errors, equipment failures, and 

natural disasters” (ibid.). 

 

3. Challenges of Meeting a Functional System 

There are many challenges that make it difficult for decision makers. First, there has not 

been a formalized methodology to utilize the information concerning different systems. There 

is no consensus for classifying systems based on their threat, criticality, and impact because of 

the subjective nature of the smart grid. For example, while experts may agree that a certain 

system is more important than another, they may be basing that decision on different reasons. 

For example, the NIST report initially defines 49 actors, but the security characteristics are only 

defined for 46 because these systems are not disparate, and one can argue that there are more 

than 46 systems or fewer. As a result, any formalized process to define risk for decision makers 

will have to be reevaluated. Additionally, the metrics used in determining risk will have to be 

reevaluated along with the types of systems included. The NIST report only took into account 

three security characteristics (confidentiality, impact, and availability) among many possibilities. 

The primary issue is that most of these characteristics are very difficult to define for each 

individual system.  
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The final major issue affects decision makers directly: how does one decide which 

systems to fortify most even when the risk is known? Ideally, all risky systems would have 

mitigations in place to avoid any breach. But realistically speaking, decision makers have to 

balance maximizing safety with maximizing profit. Consequently, they must make difficult 

decisions in terms of which systems to fortify. Experts must simplify the risk methodology so 

that it is easier for policy decisions to be made. This transfer of information from expert to 

decision maker will be a major challenge going forward. 

 

4. Technical Problem and Research Setting 

I conducted my project at OFFIS in Oldenburg, Germany, under the tutelage of Dr. 

Mathias Uslar. There were two different risk formulas that were developed: one for the 46 

actors that are defined in the Logical Inference Model (Formula 1) and one for 8 categories that 

were created from the 22 LICs (Formula 2, Table 1). These 8 categories were created to provide 

a joint risk for similar systems. Risk is a function of threat (how critical the system is), 

vulnerability (how difficult is it to breach), and impact (how devastating would an attack be). 

The risk formulas follow this form. As mentioned before, even though the NIST Guidelines 

document identifies the actors within the smart grid, it does not provide quantifiable threat 

levels. In order to do so, the Smart Grid Architecture Model (SGAM), found in Smart Grid 

Information Security, was used. Using SGAM’s High Level-Guidance Table (Table 1), the systems 

were mapped onto it based on where they fell on the intersection of domain and zone (Figure 

1), and are classified by threat level. 



 
11 

 

 

Table 1 – Threat Value Recommendation per Layer 
(Smart Grid Information Security 10) 

 

 

Figure 1 – Actors Mapped onto SGAM 
 

To classify the systems and categories of systems’ vulnerability, the number of 

interfaces and domains is connected to each system. A greater number of interfaces indicates 

that an actor is more vulnerable because there are more entry points from which an attacker 

can strike. Additionally, the more domains that an attacker can gain access to, the more 

vulnerable the entire smart grid becomes. Both of these factors were taken into account. The 

components of impact are the security characterizations defined for each system. The 

components of impact used are confidentiality, availability, and impact, which are defined by 

value in the NIST report. The final formulas are the following: 
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• Formula 1: Risk = (Threat Value*Threat of Bordering Actors)+((Number of Logical 

Interfaces/3)*Number of Domains)+(0.25 * (C Score+0.5)*(I Score+1)*(A Score+2)) 

• Formula 2: Risk = 2.25*Threat Value + (0.7)*(Number of domains+(Average Number of 

Actors/2)) + (0.125*(C Score+0.5)*(I Score+1)*(A Score+2)) 

The outcomes of the project are two formulas that can quantify the risks associated with 

particular systems and types of systems. In the Appendix to this report, the two tables detail 

how different scaled risk values are obtained using the formulas. These tables and formulas can 

help decision makers assess the risk of systems they’re responsible for and control where 

mitigations are placed.  

 

5. Future Research 

Despite the positive contributions of the risk formulas, there are important areas of 

future research that need to be considered, especially in terms of the social, legal, and ethical 

issues, as well as the decision-making process. Currently, the formulas do not take into account 

the concept of energy poverty, but there may have to be some metric that considers more than 

the availability of resources. There should be a way to quantify the risk attached to energy 

availability for impoverished people. Additionally, the privacy metric, confidentiality, needs to 

be reevaluated for the weighting it has been assigned. Historically, its importance is designated 

as well below availability and integrity, but in the modern era, privacy issues are of utmost 

importance. Decision makers must take into account not only the technical requirements of 

cybersecurity, but also the social needs of their customers. 
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Appendix 

 

Table A-1 – Formula 1 
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Table A-2 – Formula 2 

References 

European Commission. 2012. Smart Grid Information Security. European Commission Smart 

Grid Mandate, pp. 8–10. 

Hess, David J. 2014. Smart Meters and Public Acceptance: Comparative Analysis and 

Governance Implications. Health, Risk & Society 16(3): 243–258. 

National Institute of Standards and Technology. 2014. Guidelines for Smart Grid Cybersecurity. 

Nussbaumer, Patrick, et al. 2012. “Measuring Energy Poverty: Focusing on What 

Matters.” Renewable and Sustainable Energy Reviews 16(1): 231–243, 2011.07.150. 

 

  



 
15 

 

 

Tiger Mou 

Implementation of an Oriented Bounding Box Distance Sensor for Virtual Valet Parking 

Mentor: Eike Möhlmann, OFFIS 

 

I. General Problem and Context 

Many researchers are working on autonomous vehicles to get them ready for public use. 

However, a major impediment to this deployment is that the autonomous driving software in 

these vehicles must be safe and robust. Unless we can somehow verify that the software works 

and will not cause any accidents, drivers will not feel safe handing over the responsibility to the 

software. Therefore, it is necessary to test this software thoroughly before releasing it to the 

public. 

There are several ways to test the software for autonomous vehicles. One method is to 

simply run the vehicle in the real world and fix any issues that come up. However, this is costly 

and dangerous, and it requires having the physical vehicle ready for testing, which can be very 

expensive. Additionally, there is a chance that the vehicle may get into an accident. If the 

autonomous driving software injures or kills another person, the company or driver is then held 

liable for the damages, which may bring a negative attitude towards autonomous vehicles and 

the company responsible for the incident. 

Another method to test autonomous vehicles is to run the software in a simulation. By 

testing the autonomous driving software in a simulation, there is an extremely low chance that 

anyone will get hurt. Additionally, there is no need to have a working physical vehicle because 
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only a software interface with the testing platform is required. The testing software could also 

target test specific cases and provide more rapid development feedback. The simulation could 

also be run faster than real time, making it more time efficient than just a physical test run. 

Since there is a limit to how realistic a simulation can be, testing should be done with both 

methods, as described by the ENABLE-S3 project. 

It is necessary to start small and incrementally build up this testing software. By starting 

with a small use case, it is possible to significantly narrow the focus of the software and help 

simplify the software development and testing. However, the testing software would then only 

be useful for a very specific scenario. As a result, we need to use and write flexible software 

that can be easily expanded on and reused for other use cases. 

 

2. Description of the Specific Human-Cyberphysical Problem 

The use case for this software is valet parking with a parking area management. In this 

use case, a driver will drop off a vehicle at a designated location. The driver will hand the 

vehicle over to the local parking controller, and the parking controller will assign the vehicle to 

a parking spot. The vehicle will then autonomously navigate to the parking spot. When the 

driver wants the vehicle to return, the controller will notify the vehicle, and the vehicle will 

autonomously navigate back to a designated location. (The requirements that this use case is 

designed to follow is outside the scope of this report.) 
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3. Challenges of Reaching a Functional System 

There are many challenges that this test software must overcome. For example, the 

simulation must be feature rich in order to simulate a variety of scenarios and to accommodate 

different approaches to autonomous driving. During the simulation, metrics must be accurately 

calculated and reported to the test manager. These simulations should also be fast and easy to 

run. Although it is not possible to test every scenario, software simulation can test a greater 

number of scenarios than physical tests. Nevertheless, it is very important to focus on the 

important scenarios rather than focus on every possible scenario. Additionally, this test 

software has to be as good as or better than running physical tests; otherwise, there would be 

no reason to use it. The code written for this test software must also be flexible so that it can be 

reused for other test cases. 

 

4. Technical Problem and Research Setting 

I conducted my research at OFFIS in Oldenburg, Germany, under the supervision of Eike 

Möhlmann for research on the valet parking scenario. The existing work used software bu VIRES 

Simulationstechnologie GmbH, which has software called Virtual Test Drive (VTD). This software 

is a very feature-rich 3D simulation platform for a variety of vehicles in a number of computer-

generated scenarios. Although VTD can be used to test autonomous driving software, it is 

missing a few pieces that are necessary for quickly running comprehensive tests. Two of these 

missing pieces are a custom distance sensor and valet parking scenarios.  

Within the VTD software, objects are represented as 3D bounding boxes. Each object 

has x, y, and z coordinates for position and heading, pitch, and roll for orientation. Given that 
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these bounding boxes have an orientation, a simple delta x and delta y calculation is not 

enough. The distance sensor processes a list of detected objects and calculates the distance 

between the bounding box of the sensor’s vehicle and the bounding box of the detected object. 

This distance sensor must be integrated with the existing framework. For every frame of the 

simulation, the sensor will calculate the distances to the area that the sensor can detect, and 

then the sensor will forward the desired data to an external listener. Depending on how the 

sensor is configured, it may use different coordinate systems to represent the position and 

orientation of each object. The distance sensor has to understand these coordinate system 

settings and be able to switch between them. As the sensor was implemented, the results were 

verified by comparing the calculated points and distances with the reported locations and 

orientations of each object. 

My primary role in the implementation of the valet parking use case was to implement 

an oriented bounding box distance sensor for the VTD software. This distance sensor was 

needed to run various calculations on the objects in the simulation. The sensor needed to be 

customizable for future research and development. The distance sensor was designed to be 

mounted on a simulation vehicle for running calculations in real time to report metrics to a test 

controller. Although the calculations could have been performed from outside the simulation, 

there were performance losses from streaming the data to an external computer or program. 

A number of additional features for the sensor were requested. Some of these features 

included switching coordinate systems, having a sensor on each side of the vehicle, and filtering 

the reported data to send only the distance to the closest object or most critical object, where 

criticality is a function on the speed, distance, and direction of the objects to be defined in the 
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future. It was necessary to have a sensor on each side of the vehicle since collisions may occur 

on all sides of the vehicle. These features were tested to ensure that they work as expected. 

My implementation of the distance sensor accomplished all the basic required tasks. It 

successfully read the distances of detected objects and sent the data through a predefined port 

to another computer on the local network. Because it was always possible that there was a bug 

somewhere in the code, some test code for this distance sensor was needed. Additionally, all of 

the extra features implemented in this distance sensor made it more complicated and 

introduced more possibilities that there was a bug somewhere in the code, all of which 

potentially slowed down the simulation. 

 

5. Future Research 

Although the distance sensor worked correctly, there is definitely more future work that 

can be done on the distance sensor and the valet parking testing scenario. The distance sensor 

could definitely be improved by adding even more features and by improving the efficiency of 

the algorithm. More calculations could also be added and reported, such as the criticality of the 

detected objects, collisions events if they happen, and the ID of the object at fault for a 

collision. Although criticality can be a very useful metric, it can be difficult to correctly and 

accurately calculate. As a result, an outline of the method with the required data structures was 

set up, and a basic computation was done and reported. In terms of the valet parking scenario, 

we could always try to make the simulation more realistic. For example, since a major concern 

for these autonomous vehicles is how they interact with and fit in with society, we could try to 

simulate scenarios where pedestrians try to interact with an autonomous vehicle. For example, 
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when a pedestrian is interacting with an autonomous vehicle in an unexpected way, the vehicle 

must still try its best to avoid causing any accidents. Additionally, it is important to understand 

how the autonomous software might respond to ethical dilemma situations. For example, it is 

entirely possible that the vehicle will run into some variation of the trolley problem. This leads 

to the problem of whether or not drivers would approve of the autonomous vehicle’s decision 

making.  
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Joshua Petrin 

Human-Machine Interaction Development in Autonomous Vehicles 

Mentor: Johann Telsch, Deutsches Zentrum für Luft- und Raumfahrt 

 

1. General Problem and Context 

In the context of up-and-coming cyberphysical systems such as unmanned aerial 

vehicles and autonomous cars, the need for trustworthy human-machine interaction (HMI) is 

growing, even though it was already very large. HMI has been developed over the years in 

various societal engineering inventions, such as airplanes, automobiles, and even rentable 

bicycles (such as Ofo’s). Recently, much research funding has been invested in HMI for 

autonomous vehicles (AVs) because in order for them to be integrated into society, they must 

first be able to interact with the humans.  

 Autonomous vehicles offer several benefits over human drivers. For example, they can 

objectively detect obstacles, they can control their motors as precisely as their programmers 

can, and they do not have to have windows. However, it is still difficult for human drivers to 

drive with them. One reason this is the case is because AVs obey all traffic laws to the best of 

their abilities. Accidents can occur between a human driver and an AV because the driver 

expected an AV to disobey a traffic regulation rather than to stringently obey it. Confusion can 

occur between a human driver and an AV when waiting at a stop sign, and the AV does not 

know if the human driver wants to yield the right-of-way.  

 The majority of AV-human driver collisions have occurred as a result of this type of 

confusion. In fact, Kia Kokalitcheva, an Axios journaler, writes that in the 38 accidents involving 
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moving-AV and moving-human cars, only one was the fault of the AV [1]. According to Peter 

Hancock, a psychology of professor at the Institute for Simulation and Training at UCF, the 

reason this could be is because putting AVs on the road creates a disturbance in the typical 

patterns of driving [2]. For instance, if an AV goes 30 mph on a 30 mph-designated road that 

most people go 45 mph on, there is a higher probability that it will get rear-ended. Also, if an 

AV is at an intersection in accordance with traffic guidelines, and if it inches slowly into the 

intersection, human drivers might perceive this as a yielding of the right-of-way. 

 

2. Description of the Specific Human-Cyberphyscial Problem 

There are several possible causes for AV-human confusion, but they are not limited to 

cars. Confusion can also occur between AVs and pedestrians at a crosswalk. How are 

pedestrians supposed to know if an AV sees them? And what if it does not? Is it still safe to 

cross the crosswalk, or will the AV hit them? These are important problems to consider when 

introducing AVs to the roadway.  

HMI seeks to mitigate these confusions. If humans can tell what an autonomous car 

perceives, or if humans can know what the autonomous car is expected to do, then there will 

be fewer unknowns in interactions between humans and machines. Consequently, there will be 

less frustration, technology will be safer, and operation will be more effective.  

 

3. Challenges of Reaching a Functional System 

 However, despite good HMI being so necessary for future AVs, there are several 

inherent setbacks for its development. The biggest setback is dangerous experimentation. 
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Many of the HMI interfaces on the exteriors of vehicles have the potential to seriously hurt 

people who misunderstand them or make poor judgements because of them. Ironically, the 

greatest setback to HMI development for humans is that prototype HMI cannot be deployed in 

a civilian setting. Instead, it must undergo verified research and development and must adhere 

to several standards before being integrated. Therefore, HMI development can be very slow, 

and sadly this delay often keeps it from being integrated into the systems that need it the most.  

Virginia Institute of Technology performed an experiment that involved driving a 

costumed driver around in a vehicle that was painted like an autonomous car. The driver was 

disguised as the car’s car seat so that he was invisible to any passers-by. Several HMI apparati 

were installed on the interior and exterior of the confederate vehicle. The premise was to make 

the car look like an AV, even though it was only being driven by a disguised human [3]. The goal 

was to see which configuration of HMI worked better with pedestrians crossing the road. 

Several other experiments such as this one have been performed, including several in 

California. The DLR has also wanted to perform experiments such as this one. 

 

4. Technical Problem and Research Setting 

 Last summer, I was assigned to the HMI group at the Deutsches Zentrum für Luft- und 

Raumfahrt to work on car-to-driver and car-to-pedestrian indicators for autonomous vehicles. 

The Partnerships for International Research and Education internship is an NSF-sponsored 

opportunity to visit Germany and study societal-scale cyberphysical systems. The structure I 

worked on the whole summer was an LED strip they wanted to program for use on the outside 

of the vehicle. I wrote code for interfacing programmatically with the LED strip, although I did 
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not have time to complete the interface because of several setbacks, including the duration of 

my internship.  

 The HMI department at the DLR asked me to write code for an Arduino interface to the 

LED strips that were to be mounted to the external of an autonomous vehicle. However, they 

wanted the code to do something very specific. The timing protocol for the LED driver IC (the 

LPD1886) was unique to all other driver ICs, and the code that would be used for programming 

the Arduino for the LPD1886 could not be used for any other LED driver IC. As a result, Johann 

Telsch, my project supervisor, asked that I would create a program for the Arduino that would 

directly output whatever signal it received from the USB serial signal. By writing this program, 

he hoped that the HMI department would be able to program a system-based serial client for 

every LED strip they decided to use.  

 In addition to this, the HMI department asked me to design a GUI that could create 

bitmap files for LED strip animations. They asked me to use Unreal Studio because it was a 

powerful way to interface with the simulation software that the DLR uses; however, until they 

had not used it, so they wanted me to pave the way in Unreal Studio. This GUI would showcase 

an LED strip model and a timing diagram so animations could be created by scientists without 

them using an image-editing software or learning C++. Sadly, I failed to complete every project I 

worked on this summer, and all that I could submit to the DLR was unfinished bits of C++ code. 

There were a few reasons for this, but the main reason was that I ran out of time. 

 However, despite limitations, I was able to develop a good final work product. The 

entire backend of the LED strip GUI was completed, and it came in a complete, header-only 

library. Also, I created a good framework for the timing requirements of the Arduino 
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programmer, so any knowledgeable programmer who wanted to complete my library could 

read my existing documentation and do so.  

 

5. Future Research 

 In the context of car-pedestrian HMI, the DLR wants to continue its HMI research. They 

plan on replicating the experiments performed by Virginia Tech and have been designing a car 

seat costume to use for experimentation. Once it is complete, they will use the costume in 

conjunction with the LED strip module in a social experiment. 

 More work will be made by the DLR in Unreal Studio. They want to use it to program the 

LED strip module. Programs will be made by psychologists without awareness of the code for 

the strip, and experiments for the types of animation colors used in the strip will be performed. 

The LED strip that I worked on will eventually be implemented in an internal and external HMI 

scheme that will interact with the passenger of the AV and the pedestrians outside of the AV. 

This scheme will improve interactions between pedestrians and AVs as well as prevent 

pedestrians from being harmed by unwittingly crossing autonomous cars.  
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1. General Problem and Context 

There is a race within the automotive industry to develop technology for highly 

autonomous vehicles (HAVs), which rely on accurately perceiving and cooperating with their 

environment in order to be safely mobile without human input. HAVs have the future potential 

to improve passenger safety, traffic throughput, and universal mobility by removing humans 

from the control loop; however, they face a number of societal-scale issues before their large-

scale adoption and associated benefits can become reality. 

 One such societal-scale hurdle that HAVs face is a considerable lack of consumer trust 

regarding their safe comportment. There have been recent high-profile autonomous vehicle 

accidents (Uber, in Tempe, Arizona, 2018 and Tesla, in Williston, Florida, 2016) [1, 2], which 

decrease consumer confidence in the safety of HAVs. Without the option of referencing a clean 

track record of HAV operation, it is difficult to communicate credible guarantees of HAV 

technology safety to the public. 

 As independent agents on the road that will interact directly with humans, HAVs are 

expected to behave ethically, as another human would. Numerous examples of ethical 

dilemmas including the infamous trolley problem are brought up in the context of HAVs [3]. 

Awareness of these issues intensifies the debate on how HAVs should interact with humans, 

and it brings this unanswered question into the public spotlight. 
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In the legal domain, HAVs face additional societal-scale challenges. Lawmakers must 

produce new legislation and standards for HAVs with little knowledge of their technical aspects 

and with little coordination on a national and international level. These specifications would 

need to govern the innate behavior of HAVs in a specific and measurable way, yet still be 

general enough to be applicable over a wide variety of situations. 

In each of these societal-scale challenges faced by HAVs, there is a disconnect between 

the technical aspects of future HAV technology and the public perception of HAV technology. A 

way that car manufacturers could attempt to bridge these issues is to express safe HAV traffic 

behavior with tools that are scientific and measurable, yet still grounded in aspects of driving 

that are familiar to the public. One promising technique in the safety-critical systems domain is 

employing criticality metrics, which have additional value when used as a technique for 

communication with the public. 

 

2. The Specific Human-Cyberphysical Problem 

 Traffic criticality metrics are well-established concepts in literature that relate the 

motion of an ego vehicle and its surroundings (other vehicles and objects) to a measure of 

danger for ego in the given scenario. A metric will often express a time left until a critical event 

(with lower values indicating higher criticality) or consider the speed of the participating 

vehicles to yield a measure of danger.  

Each metric can represent a unique source of danger for ego or can be a composition of 

other existing criticality metrics. For example, a metric can represent the time to collision (Time 

to Collision, TTC) [4] between a current trajectory of ego and another vehicle, a metric can 
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represent the time a vehicle takes to occupy the space of a previous moving vehicle (Post 

Encroachment Time, PET) [4], or a metric can be an expression that considers both TTC and 

ego’s current speed to yield a measure of momentum change required to stop ego over a time 

period in a crash scenario (Criticality Index, CI) [5]. 

It is important to note that each criticality metric represents an aspect of danger in a 

critical scenario rather than a specific formula. Criticality metrics are calculated based on the 

motion model of a vehicle, and thus the formula used to determine them could change with 

different motion models and situations. Criticality metrics, as an aspect of danger in a scenario, 

also are not applicable in all scenarios. For example, in a trajectory in which ego is not predicted 

to crash has no TTC defined. 

Examples of Criticality Metrics 
Criticality Metric Example Formula Source of Criticality Metric 

TTC 

 

[4] 

PET 
 

[4] 

CI 

 

[5] 

 

 

3. Challenges of Meeting a Functional System 

Given the broad range of situations that can be encountered on the road, HAVs cannot 

be programmed to react to every concrete scenario. Rather, HAVs’ behavior can only 

realistically be specified in abstract terms. Abstract traffic scenario modeling tools such as 

Traffic Sequence Charts (TSCs)[6] are being used and are continuously under development for 

this purpose. In order to reflect the level of abstraction of the design process, criticality for 
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HAVs would need to be characterized in abstract terms, and the formulas which define their 

measurement would also need to be expressed in a uniform manner. 

Although criticality metrics can represent general sources of traffic-induced danger, 

their definitions in literature are often highly contextual. Their applicability in certain traffic 

scenarios is not always made clear by their definitions in literature, and their formulas are 

highly coupled with the underlying vehicle motion model and the small details of the traffic 

situation they are used in.  

An example of the tight coupling of criticality metrics to situational- and motion-model-

context can be found in an influential criticality metric publication [7]. The publication describes 

an algorithm for making collision mitigation maneuver decisions in the context of turning at a 

busy intersection. Using a “curved coordinate system” in order to simplify the motion model of 

ego turning through an intersection, the publication defines several criticality metrics to 

consider in the algorithm: areq (required braking deceleration to avoid collision) and Time to 

Touch (TTT, time at which ego ‘touches’ another vehicle with zero relative velocity after 

undergoing areq). Four permutations of the contextual example are considered in which the 

other vehicle comes to a standstill, evades ego’s predicted path, both, or neither. As a result, 

there are four different methods for calculating areq and TTT for this single example. This 

inconsistency due to the tight coupling of criticality metrics to concrete contexts makes current 

criticality metrics cumbersome to use in abstract HAV behavior specification. 
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4. Technical Problem and Research Setting 

 In the summer of 2018, I worked at a research institution in Oldenburg, Germany, called 

OFFIS, which is oriented towards solving emerging issues in energy, health, and transportation. 

My assignment domain was transportation, and I helped Thomas Peikenkamp and other 

members of CrEST investigate the incorporation of criticality metrics into TSCs, their graphical 

traffic scenario language based on formal semantics [6]. 

In order to decouple criticality metrics from their situational context and motion model 

such that they are more suitable in abstract applications, a parameterization of criticality 

metrics can be made based on actor trajectories. This parameterization defines an actor 

trajectory Tact, which specifies an evolution of position for an actor over time. 

 

Additionally, a collision relation c can be defined such that a Boolean ‘true’ value is 

returned if there is a collision between two actor trajectories over a time interval. If there is a 

collision, a time tc specifies the time at which the collision occurs.  

 

The concrete implementation of the collision can be realized at a later time and can be 

specialized for specific contexts. A potential implementation could be to test possible 

trajectories from a reachable set based on an abstract maneuver class similar to what is 

described in the Maneuver-based motion models section of Lefèvre et al. 2014 [8]. 

With trajectories and a collision relation, expressions can be developed in an intuitive 

manner that represents criticality metrics. For example, if there is a collision between actor a 

and actor b over a time period [t0,t1), TTC over time is defined as follows: 
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If there is a collision specified between actor a and the instantaneous position of actor b at time 

instance t, then PET(t) could be expressed as follows: 

 

And finally, if a collision is specified between ego and another actor over a time interval, the 

criticality index for ego at time t can be expressed as follows: 

 

 Using this framework, criticality metrics can be defined in abstract terms yet still retain 

their quantitative meaning. Many other established criticality metrics besides TTC, PET, and CI 

can be interpreted in this manner. 

 

5. Future Research 

 Criticality metrics have proven their value as a technical tool for safety-critical systems. 

However, when the social implications of their application to HAVs is considered, the technical 

value of criticality is enhanced and new applications for criticality metrics as tools for 

communication become possible. As established scientific measures of danger that are 

expressed in familiar driving terms, socially-focused criticality metric research could promote an 

understanding of HAV safety-critical behavior that is more accessible to the public. 

With consideration of the societal-scale issue of ethical HAV behavior, criticality metric 

research could be applied to the consequentialist approach of ethics [3]. In this leading 

approach on implementable HAV ethical frameworks, ethical choices are determined by 
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assigning ethical costs to decisions. Criticality metrics, which reflect passenger safety, could be 

included in the cost calculation for the ethical decision. 

 Research of criticality metrics could be further improved with social-domain 

consideration by investigating their use as a communication tool. Criticality metrics could be 

used by lawmakers for writing measurable and explicit safety-critical standards for HAVs 

without requiring detailed knowledge of the HAV pathing and decision-making implementation. 

Additionally, criticality metrics are defined in terms of familiar traffic concepts and could apply 

to generalized traffic scenarios, reducing the amount of specific legislation for more concrete 

situations. 

 If the parameters of criticality metrics implemented in HAVs are explored with respect 

to the diverse driving preferences of different demographic groups, traffic throughput and 

comfort can be optimized. For example, criticality metric preferences between urban and rural 

populations could differ if urban users are willing to trade the higher criticality of a lower Post 

Encroachment Time for the higher traffic throughput of following vehicles more closely.  

 In conclusion, consideration of ethical, legal, and social issues associated with HAVs 

when researching criticality metrics would benefit both the automotive industry and the 

consumer. Grounded as a technical tool, criticality metrics can have applications as a tool for 

communication, promoting consumer trust and adoption of HAVs. 
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