Productive Programming for Situational Awareness and Response

Rob Fowler (UNC-CH/RENCI)

Goal: Research on improving programming productivity for sensing and sense/react systems.

- •Productivity = Net present value of output.
 - •Efficient design and deployment
 - •Timely delivery of the right results.
- •QoS/Relevance constraints.

Driving Problems: Environmental Sense/React. Rapidly deployable, Robust, Real-time Situational Awareness and Response (R³SAR Systems).

- •Response to environmental emergencies: fire, flood, wind, ...
- •DHS and DoD problems.
- •Cost-effective sensing for field sciences.

General Approach: Explore/extend successful dataoriented, high-productivity methods.

- •Spreadsheet (Table) idiom.
- •Map/Reduce → Sense/Reduce
- •Databases and extensions.
- (Scripting languages.)

Specific Activities:

- •Experimental platforms:TelosB and Sunspots, embedded (MAEMO, Android, ...) devices.
- •Software prototyping and experimentation.
 - Sense/reduce prototype.
 - •Campus WiFi base station signal strength capture
 - •Control interface for "Tables" on Android phone.
 - Bird feeder monitoring.

A Motivating Example: Flood Sensing in estuaries sensitive to storm surges (2007-2009)

RENCI and Brunswick County EMS.

- •Internet base stations (PC104/Linux) connected to EMS with failover using wired service, cellular modems, AV.25 on trunked EMS radio.
- •Results distributed via (Mobile) Web.
- •Base-station to sensor node (SunSpot) connectivity via wire, Bluetooth, Zigbee.
- •Sensors: flood level, robust weather stations.
- •Ample battery capacity with PV chargers.

