Autonomy, Authority and Human Interaction Challenges in Air Transportation Systems

Hamsa Balakrishnan Massachusetts Institute of Technology

> CPS PI Meeting October 3, 2012

Problem: Airport surface congestion

Solution: Pushback Rate Control

 Aircraft pushback from gates, start their engines, and then taxi until they takeoff

- Control pushbacks in order to maintain runway utilization while avoiding excessive levels of congestion
- Key challenges:
 - 1. How do we design the control strategy?
 - 2. How do we implement control strategy?
 - 3. How do we interface with human controllers?

1. Designing control strategy

- Dynamic control problem that recommends pushback rate to maintain departure throughput, given taxiway & runway queues
 - Data-driven modeling of runway processes and system dynamics
 - Optimal pushback rate to balance runway throughput and congestion

4

2. Implementing control strategy

- On-off control does not work in practice
 - Air traffic controllers are humans, not automata
 - Rather than release an aircraft every time that a flight takes off, controllers prefer a rate at which to let aircraft pushback from their gates
 - Pushback Rate Control
 - Rate is updated periodically

3. Interfacing with human controllers

Incorporating humans into control

- Survey of BOS controllers
 - 21 respondents: 15 (BOS Gate 2010), 13 (2011), and 12 (both)
 - General support: "the ability to touch planes," "reserve spots," "...count the planes and account for aircraft with long delays," "allows me to push & tells me to hold," and "easy to use & understand"
 - Responses were positive about combining BOS Gate & another position

BOS field-test results

- Aug-Sep`10 & Jul-Aug`11
- 4PM-8PM departure push
- Average gate-hold: 4.7 min
- 23-25 tons (6,600-7,300 gal) reduction in fuel burn
- 52-58 kg decrease in fuel burn / gate-held flight
- 71-79 tons CO₂ reduction
- Fair distribution of benefits
- 1 min gate-hold => 1 min of taxi-out time savings
- Positive stakeholder feedback
 - Traffic managers noted improved surface "flows"

Configuration	# gate holds	Taxi-out time savings (min)
27, 22L 22R	63	256
27, 32 33L	34	114
27, 32 33L	8	38
27, 22L 22R	45	295
27, 22L 22R	19	42
27, 22L 22R	11	23
27, 32 33L	11	24
27 32 33	56	210
27, 02 00L	00	210
2010	247	1003 min = 16.7 hours
2010 27, 22L 22R	247 14	1003 min = 16.7 hours 28
2010 27, 22L 22R 27, 22L 22R	247 14 42	1003 min = 16.7 hours 28 384
2010 27, 22L 22R 27, 22L 22R 27, 22L 22R	247 14 42 50	1003 min = 16.7 hours 28 384 290
2010 27, 22L 22R 27, 22L 22R 27, 22L 22R 27, 22L 22R 4L,4R 4L,4R,9	247 14 42 50 11	1003 min = 16.7 hours 28 384 290 13
2010 27, 22L 22R 27, 22L 22R 27, 22L 22R 4L,4R 4L,4R,9 4L,4R 4L,4R,9	247 14 42 50 11 7	1003 min = 16.7 hours 28 384 290 13 13
2010 27, 22L 22R 27, 22L 22R 27, 22L 22R 4L,4R 4L,4R,9 4L,4R 4L,4R,9 27, 22L 22R	247 14 42 50 11 7 6	1003 min = 16.7 hours 28 384 290 13 13 9
2010 27, 22L 22R 27, 22L 22R 27, 22L 22R 4L,4R 4L,4R,9 4L,4R 4L,4R,9 27, 22L 22R 27, 22L 22R	247 14 42 50 11 7 6 12	1003 min = 16.7 hours 28 384 290 13 13 9 23

Key challenges

- Designing control strategies
 - Data-driven modeling
- Implementation/field-testing
- Interfacing with humans
- Evaluation/performance tracking/metrics
- Important to consider tradeoffs/interactions
- Situational awareness is important, but does not equal decision-support!
- Need graceful degradation in case of automation failure
 - "Business-as-usual" may not be feasible fall-back option,