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This project is a component of a larger effort is to develop the
foundations of modeling, synthesis and development of
verified medical device software and systems from verified
closed-loop models of the device and organ(s). This research
spans both implantable medical devices such as cardiac
pacemakers and physiological control systems such as drug
infusion pumps which have multiple networked medical
systems. Here we focus on advancing two aspects of this
work: (1) development of patient-specific models and
therapies and (2) multi-scale modeling of complex
physiological phenomena.
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Mathematical models, generally posed as a system of
differential equations, are an important tool for studying
phenomena in cardiac electrophysiology ranging from
cellular and subcellular mechanisms to tissue-level
properties of arrhythmias and defibrillation. However, finding
parameters for these models that fit experimental data is
challenging because of the large number of parameters,
biological variability, and the highly nonlinear nature of the
problem. Because it may be necessary to perform multiple
parameterizations for a single experiment, computational
efficiency is also important. For this work we use the
following models and parameter-fitting algorithms.
• Two flexible models

• Fenton-Karma (FK) model: 3 coupled differential
equations, 13 parameters, cannot reproduce action
potential shape.

𝜕𝜕𝑡𝑡𝑢𝑢 𝑡𝑡, 𝐱𝐱 = − 𝐼𝐼𝑓𝑓𝑓𝑓 𝑢𝑢, 𝑣𝑣 + 𝐼𝐼𝑠𝑠𝑠𝑠 𝑢𝑢 + 𝐼𝐼𝑠𝑠𝑓𝑓 𝑢𝑢,𝑤𝑤

𝜕𝜕𝑡𝑡𝑣𝑣 𝑡𝑡, 𝐱𝐱 = �
−𝑣𝑣/𝜏𝜏𝑣𝑣+ 𝑢𝑢 ≥ 𝑢𝑢𝑐𝑐

(1 − 𝑣𝑣)/𝜏𝜏𝑣𝑣2− 𝑢𝑢𝑐𝑐 > 𝑢𝑢 ≥ 𝑢𝑢𝑣𝑣
(1 − 𝑣𝑣)/𝜏𝜏𝑣𝑣1− 𝑢𝑢 < 𝑢𝑢𝑣𝑣

𝜕𝜕𝑡𝑡𝑤𝑤 𝑡𝑡, 𝐱𝐱 = � −𝑤𝑤/𝜏𝜏𝑤𝑤+ 𝑢𝑢 ≥ 𝑢𝑢𝑐𝑐
(1 −𝑤𝑤)/𝜏𝜏𝑤𝑤− 𝑢𝑢 < 𝑢𝑢𝑐𝑐

𝐼𝐼𝑓𝑓𝑓𝑓(𝑢𝑢, 𝑣𝑣) = �−𝑣𝑣(𝑢𝑢 − 𝑢𝑢𝑐𝑐)(1 − 𝑢𝑢)/𝜏𝜏𝑑𝑑 𝑢𝑢 ≥ 𝑢𝑢𝑐𝑐
0 𝑢𝑢 < 𝑢𝑢𝑐𝑐

𝐼𝐼𝑠𝑠𝑠𝑠 𝑢𝑢 = �1/𝜏𝜏𝑟𝑟 𝑢𝑢 ≥ 𝑢𝑢𝑐𝑐
𝑢𝑢/𝜏𝜏𝑠𝑠 𝑢𝑢 < 𝑢𝑢𝑐𝑐

𝐼𝐼𝑠𝑠𝑓𝑓 𝑢𝑢,𝑤𝑤 = −𝑤𝑤 1 + tanh 𝑘𝑘 𝑢𝑢 − 𝑢𝑢𝑐𝑐𝑠𝑠𝑓𝑓 /(2𝜏𝜏𝑠𝑠𝑓𝑓)

• Bueno-Orovio et al. (BO) model: Extension of the FK
model with 4 differential equations, 28 parameters, can
reproduce action potential shape.

• Two parameter-fitting algorithms:
• Genetic algorithm: Different areas of parameter

space are explored; fitness metric includes curve error
as well as action potential duration.

• Data assimilation: Fitting performed in conjunction
with state estimation. One or more parameters are
introduced for estimation as additional differential
equations with time derivatives of zero; nevertheless,
the model parameters being estimated receive
corrections indirectly when the ensemble members are
updated. Results here are for one spatial dimension.

We consider finding parameterizations to fit the models to
data generated from models, including model recovery
cases, as well as experimental data from microelectrode
recordings.

For experimental data, we permitted the algorithm to vary 18 parameters. The
algorithm was able to find good parameterizations for endocardial microelectrode data
(two CLs fit simultaneously) and for epicardial microelectrode data.

Genetic Algorithm: Experimental Data

Biphasic stimulus current with the FK model.
Top left: representative 0d fitting using a
square stimulus. Despite problems fitting the
upstroke (inset), curve error remains small.
Top right: 0d simulation using the parameters
from the fit at the left but with a biphasic
stimulus: no action potential results. Bottom
left: Target parameters produce wave
propagation in 1d. Bottom right: parameter
values from the 0d fit (top left) fail to produce
wave propagation in 1d.

We solve the model differential equations for a single cell only to speed up calculations
by two orders of magnitude and aim to overcome known differences between single-
cell and tissue dynamics through use of a biphasic stimulus current derived from an
intercellular coupling current in 1d.

Data Assimilation: Model Recovery

Fitting sensitive parameter 𝜏𝜏𝑑𝑑 and
insensitive parameter 𝜏𝜏𝑣𝑣+ together yields
the same results as fitting both
separately.

Estimates of different single
parameters in the Fenton-Karma
model using data assimilation. Each
shows the parameter estimate as a
function of time. Top left: 𝜏𝜏𝑑𝑑 is fit well.
Top right: 𝜏𝜏𝑣𝑣+ is not fit well. Middle row:
𝜏𝜏𝑣𝑣1− is not fit well from over- or
underestimates. Bottom row: 𝜏𝜏𝑟𝑟
sometimes can be fit and sometimes
cannot depending on initial conditions
and algorithm parameters.

Algorithm performance
for the FK model using a
square stimulus with two
parameters being fit, with
visualization of the fitness
landscape. Because the
landscape is fairly flat,
the GA has difficulty
improving after finding an
area of good fitness.

Algorithm performance
for the FK model using a
biphasic stimulus with
two parameters being fit,
with visualization of the
fitness landscape. The
fitness landscape is
significantly less flat than
for the square stimulus,
and population members
move quickly toward the
correct parameter values.
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We also consider estimating parameters as part of state estimation through
data assimilation. We use the Local Ensemble Transform Kalman Filter
(LETKF), which has been used previously for cardiac state reconstruction
and includes an ensemble of states to characterize uncertainty.

FK model

BO model

Time (ms) Time (ms)Time (ms)
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Genetic Algorithm Data Assimilation
+ Can find acceptable values for
many parameters for the FK and BO
models; sensitive to many
parameters.
+ Use of biphasic current gives
results closer to those from 1d using
0d, aiding in efficiency.
+ Many parameters can be fit
simultaneously.
- Fairly good bounds are needed to
avoid long runtimes.
- Algorithm can fit some experimental
data but has trouble with other types.

+/- Can find acceptable values for a
limited number of parameters for the
FK model; sensitive to a small
number of parameters.
+ If state estimation is performed,
parameter estimation adds little to
the computational cost.
+/- A few parameters can be fit
simultaneously
- Fairly good initial estimates are
needed.
- Algorithm has not been tested with
experimental data.

Parameters are added as extra differential equations with time derivatives of
zero and receive corrections indirectly when the ensemble members are
updated. Results here are for one spatial dimension.

Many parameters cannot be fit robustly because the model is relatively
insensitive to them; their effects are not large enough over the typical
assimilation interval. The algorithm can account for the small differences
evident in wave properties over that time interval when observations are
assimilated, thereby making it unnecessary to adjust the parameter value.

Discordant alternans truth state and reconstruction. Ensemble is initialized
to random model states and the initial state estimate is the ensemble
average. Corrections from noisy data quickly correct to a wave shape.

Both approaches show promise for finding model parameterizations and will
help in producing personalized models, which can lead to more accurate
and robust results in simulating interactions between organs and devices.
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