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Abstract—In this paper, the passivity indices for both lin-
ear and nonlinear multi-agent systems with feedforward and
feedback interconnections are derived. For linear systems, the
passivity indices are explicitly characterized, while the passivity
indices in the nonlinear case are characterized by a set of matrix
inequalities. We also focus on symmetric interconnections and
specialize the passivity indices results to this case. An illustrative
example is also given.

I. INTRODUCTION

Passive systems can be thought of as systems that do not
generate energy, but only store or release the energy which
was provided. The notion of energy here is a generalization
from the traditional notion of energy in physics and is
characterized by a storage function. Passivity is a special case
of dissipativity, which can be applied to linear and nonlinear
systems. The benefit of passivity is that when two passive
systems are interconnected in parallel or in feedback, the
overall system is still passive. Thus passivity is preserved
when large-scales systems are combined from components
of passive subsystems. Passivity indices are used to measure
the excess and shortage of passivity by rendering the system
passive with feedback and feedforward, and describe the
performance of passive systems[1],

The concepts of passivity and dissipativity are intro-
duced in [2], [3], [4]. There have been early studies on
interconnected systems[5]. Recent papers [6], [7] study the
stability conditions in interconnected passive systems, and
the close relationships between output feedback passivity
and L2 stability. [8] designs a passivity-based controller for
asymptotic stabilization of interconnected port-Hamiltonian
systems. Passivity indices of cascade systems are measured
in [9].

Symmetry, as one basic feature of shapes and graphs, has
been exhibited in many real-world networks, such as the In-
ternet and power grid, resulting from the process of tree-like
or cyclic growing. Since symmetry is related to the concept
of a high degree of repetitions or regularities, the study of
symmetry has been appealing in many scientific areas, such
as Lie groups in quantum mechanics and crystallography in
chemistry.

In the classical theory of dynamical systems, symmetry
has also been extensively studied. For example, to simplify
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the analysis and synthesis of large-scale dynamic systems, it
is always of interest to reduce the dynamics of a system into
smaller symmetric subsystems, which potentially simplifies
control, planning or estimation tasks. When dealing with
multi-agent systems with various information constraints and
protocols, under certain conditions such systems can be
expressed as or decomposed into interconnections of lower
dimensional systems, which may lead to better understanding
of system properties such as stability and controllability.
Then the existence of symmetry here means that the system
dynamics are invariant under transformations of coordinates.

Early research on symmetry in dynamical systems could
be found in [10], [11], [12]. Symmetry in the sense of
distributed systems containing multiple instances of identical
subsystems are studied in [13], [14], where the controllability
of the entire class of systems can be determined by reducing
the model and examining a lower order member of the
equivalence class. Different forms of symmetry, such as
star-shaped or cyclic symmetry[15] give different stability
conditions for interconnected systems. We will also show
that in this paper.

The current paper is motivated by the interest of sufficient
stability conditions in [15] and passivity as a binary system
characterization. Passivity indices used in [1] can measure the
level of passivity thus imply the degree of stability. With the
distributed setup in this paper, the passivity indices for both
linear and nonlinear multi-agent systems with feedforward
and feedback interconnections are derived. For linear sys-
tems, the passivity indices are explicitly characterized, while
the passivity indices in the nonlinear case are characterized
by a set of matrix inequalities. We also focus on symmetric
interconnections and specialize the passivity indices results
to this case. An illustrative example is also given.

The paper is organized as follows. In Section II, we intro-
duce some background on passivity indices and symmetry
in dynamical systems. In Section III, the passivity indices
for interconnected systems are derived for both linear and
nonlinear systems. Section IV deals with symmetric inter-
connections. Section V contains simulation results, followed
by concluding remarks in Section VI.

II. PRELIMINARIES AND BACKGROUND

A. Passive and Dissipative Systems

Consider the nonlinear system

ẋ = f(x, u), y = h(x, u) (1)

19th Mediterranean Conference on Control and Automation
Aquis Corfu Holiday Palace, Corfu, Greece
June 20-23, 2011

TuAT1.1

978-1-4577-0123-8/11/$26.00 ©2011 IEEE 1



where x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, u ∈ U ⊂ Rm,
m ≤ n. Let U be an inner product space whose elements
are functions u : R → R. Also let Um be the space of n-
tuples over U, with inner product ⟨y, u⟩ =

∑m
i=1 ⟨yi, ui⟩.

Then for any y, u ∈ Um and any T ∈ R, a truncation uT
can be defined via

uT (t) =

{
u(t), for t < T
0, otherwise

A truncated inner product is defined as ⟨u, v⟩T = ⟨uT , vT ⟩in
an extended space Um

e = {u|ut ∈ Um, ∀T ∈ R}. The inner
product over the interval [0, T ] for continuous time is denoted
as ⟨y, u⟩T =

∫ T

0
yT(t)u(t)dt.

A system with m inputs and m outputs may now be
formally defined as a relation on Um

e × Um
e , that is a set

of pairs (u ∈ Um
e , y ∈ Um

e ), where u is an input and y the
corresponding output.

Definition 1. [2] A system is dissipative if there exists a
positive definite storage function V (x) such that for some
supply rate ω(u, y) and for all t1 < t2∫ t2

t1

ω(u, y)dt ≥ V (x2(t))− V (x1(t))

[3] A system is (Q,S,R) − dissipative if the system is
dissipative with respect to the supply rate

ω(u, y) =

[
y
u

]T [
Q S
ST R

] [
y
u

]
= yTQy + 2yTSu+ uTRu

where Q ∈ Rp×p, S ∈ Rp×m, and R ∈ Rm×m be constant
matrices, with Q and R symmetric.

[1] A system is passive and simultaneous input feedfor-
ward passive(IFP) and output feedback passive(OFP) if the
system is dissipative with respect to the supply rate

ω(u, y) = (1 + ρν)yTu− νuTu− ρyT y

where ρ ∈ R is the OFP index and ν ∈ R is the IFP index.
1. When ρ = ν = 0, ω(u, y) = yTu. The system is said

to be passive.
2. When ρ = 0, ν ̸= 0, ω(u, y) = yTu − νuTu. The

system is said to be input feedforward passive(IFP).
3. When ρ ̸= 0, ν = 0, ω(u, y) = yTu − ρyT y. The

system is said to be output feedback passive(OFP).
In the case when ν > 0 or ρ > 0, the system is said to

be input strictly passive(ISP) or output strictly passive(OSP)
respectively. Obviously passivity is a special case of dissipa-
tivity. Passivity indices ρ and ν can be generalized to be ρ(y)
and ν(u) if the feedforward and the feedback is not static.

B. Symmetry in Dynamical Systems

Intuitively, symmetry in dynamical systems means that
the system dynamics are invariant under transformations. We
formalize this in terms of the concepts of diffeomorphism.

Consider the nonlinear system 1 and the local group of trans-
formations on X × U defined by (X,U) = (φg(x), ψg(u))
where g ∈ G, φg acting on X and ψg acting on U are local
diffeomorphisms.

Definition 2. [16]The system 1 has a G-symmetry or is G-
invariant if f(φg(x), ψg(u)) = Dφg(x) · f(x, u) for all g,
x, u.

Figure 1. Symmetry in geometric control

Definition 3. [16]The output y = h(x, u) is G-equivalent if
there exists a transformation group(ρg)g∈G on Y such that
f(φg(x), ψg(u)) = ρgh(x, u) for all g, x, u.

With (X,U) = (φg(x), ψg(u)) and Y = ρg(y), the
properties can be rewritten as Ẋ = f(X,U), Y = h(X,U).
It means the system remains unchanged under the transfor-
mation. The two previous definitions can be illustrated by
the commutative diagram in Fig. 1.

C. Symmetric Distributed System

Figure 2. Interconnected multi-agent system

Consider a multi-agent dynamical system consisting of
subsystems Σ on the diagonal as in Fig. 2. Σ is described
by

ẋi = f(xi, ui) (2)

yi = h(xi, ui)

with storage function Vi(x), supply rate ωi(ui, yi), where
i = 1, . . . ,m. Hρ and Hν are constant feedback and feedfor-
ward interconnection matrices, the system inputs and outputs
are stacked u = [uT1 , u

T
2 , . . . , u

T
m]T , y = [yT1 , y

T
2 , . . . , y

T
m]T .

(ũ, ỹ) is the input and output for the interconnected system.
To describe the relationships between multiple agents, we
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have a digraph G to model the interaction topology for a
network control system [17].

Here, for a symmetric group Sp consisted of p subsystems,
we consider three types of symmetries, namely star-shaped
symmetry, cyclic symmetry and chain symmetry. Intuitively,
in a star-shaped symmetric group, subsystems do not have
interconnections with each other. In cyclic symmetric group,
subsystems contribute to a close related automorphism group.
In chain symmetry, each subsystem has interconnections with
its two neighbors, except the leading and ending agents. See
Fig. 3, 4, 5.

Fig.3 Star-shaped symmetry Fig.4 Cyclic symmetry

Fig.5 Chain symmetry

III. PASSIVITY INDICES FOR INTERCONNECTED
SYSTEMS

Let subsystem Σ be a passive system with OFP index ρ and
IFP index ν. It can be easily shown that the stacked system
is also passive with indices (ρ, ν). If we define the storage
function as V (x) =

∑m
i=1 Vi(x), then V̇ (x) is bounded

because

V̇ (x) =
m∑
i=1

V̇i(x) ≤
m∑
i=1

ωi(ui, yi)

= (1 + ρν)
m∑
i=1

yTi ui − ν
m∑
i=1

uTi ui − ρ
m∑
i=1

yTi yi

= (1 + ρν)yTu− νuTu− ρyT y , ω(u, y)

So ω(u, y) is the supply rate for the multi-agent system.
With feedback interconnection matrix Hρ and feedforward
interconnection matrix Hν (see Fig. 2), the new input and
output is given by {

ỹ = y −Hνu
ũ = u−Hρy

(3)

Next we are deriving the passivity indices of the intercon-
nected distributed system with respect to input-output pair
(ũ, ỹ).

A. Linear Passive Systems

Theorem 1 For a minimum phase linear system G(s)
consisting of scalar passive subsystems, with only the output
feedback loop, i.e. Hρ ̸= 0, Hν = 0, the output feedback
passivity index is given by

ρ̃ = ρ− λ

(
Hρ +HT

ρ

2

)
(4)

Proof: According to [1], the OFP index is defined as

ρ = ρ (G(s)) =
1

2
min
ω∈R

λ
(
G−1(jω) +

[
G−1(jω)

]∗)
(5)

where λ(·) is the minimum eigenvalue of a matrix. For the
closed loop system which is also minimum phase

Gcl(s) = (I −GHρ)
−1G = (G−1 −Hρ)

−1

the new OFP index is given by

ρ̃ = ρ (Gcl(s)) =
1

2
min
ω∈R

λ
(
G−1

cl (jω) +
[
G−1

cl (jω)
]∗)

=
1

2
min
ω∈R

λ
(
G−1(jω) +

[
G−1(jω)

]∗ −Hρ −H∗
ρ

)
It is known [18] that if two matrices A and B commute, so
that AB = BA, A,B ∈ Rn, then the two sets of eigenvalues
{λi(A+B)} and {λi(A)+λi(B)} are equal; also λ(A+B) =
λ(A) + λ(B). Since all scalar subsystems have the same
dynamic, G−1(jω) +

[
G−1(jω)

]∗
is a diagonal matrix with

identical diagonal entries, which commutes with any matrix.
Thus

ρ̃ =
1

2
min
ω∈R

λ
(
G−1(jω) +

[
G−1(jω)

]∗)
+
1

2
λ
(
−Hρ −H∗

ρ

)
= ρ− λ

(
Hρ +HT

ρ

2

)

When G(s) is not diagonal, we can derive the boundary of
ρ̃. From Fact 5.12.2[18], if A and B are Hermitian matrices,
λ(A) + λ(−B) ≤ λ(A − B) ≤ λ(A) − λ(B). Since here
G−1(jω)+

[
G−1(jω)

]∗
and −Hρ −H∗

ρ are both Hermitian
matrices,

ρ̃ ≤ 1

2
min
ω∈R

(
λ
(
G−1(jω) +

[
G−1(jω)

]∗)− λ
(
Hρ +H∗

ρ

))
= ρ− λ

(
Hρ +HT

ρ

2

)

ρ̃ ≥ 1

2
min
ω∈R

(
λ
(
G−1(jω) +

[
G−1(jω)

]∗)
+λ
(
−Hρ −H∗

ρ

))
= ρ− λ̄

(
Hρ +HT

ρ

2

)
i.e. for any G and Hρ,

ρ− λ̄

(
Hρ +HT

ρ

2

)
≤ ρ̃ ≤ ρ− λ

(
Hρ +HT

ρ

2

)
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Theorem 2 For a linear stable system G(s) consisting of
scalar passive subsystems, with only the input feedforward
loop, i.e. Hρ = 0, Hν ̸= 0. The input feedforward passivity
index is

ν̃ = ν − λ

(
Hν +HT

ν

2

)
(6)

Proof: According to [1], for a linear stable system G(s),
the IFP index can be calculated as

ν = ν (G(s)) =
1

2
min
ω∈R

λ (G(jω) +G∗(jω))

for the closed loop system which is also stable

Gcl(s) = G−Hν

the new IFP index is

ν̃ =
1

2
min
ω∈R

λ (Gcl(jω) +G∗
cl(jω))

=
1

2
min
ω∈R

λ (G(jω) +G∗(jω)−Hν −H∗
ν )

= ν − λ

(
Hν +HT

ν

2

)

A similar approach can be found in [19] as a passivation
method. Also, if G is not diagonal, the following inequality
holds

ν − λ̄

(
Hν +HT

ν

2

)
≤ ν̃ ≤ ν − λ

(
Hν +HT

ν

2

)
B. Nonlinear Systems

Theorem 3 Consider a nonlinear multi-agent system with
the input feedforward interconnection matrix Hν and output
feedback interconnection matrix Hρ, where I − HνHρ and
I −HρHν are nonsingular. If the subsystems have the same
passivity indices (ρ, ν), then the passivity indices (ρ̃, ν̃) for
the whole system satisfy

P̃ − H̃TPH̃ ≥ 0 (7)

where

P =

[
−ρI 1+ρν

2 I + S
1+ρν

2 I − ST −νI

]
P̃ =

[
−ρ̃I 1+ρ̃ν̃

2 I + S̃
1+ρ̃ν̃

2 I − S̃T −ν̃I

]
H̃ =

[
(I −HνHρ)

−1 (I −HνHρ)
−1Hν

(I −HρHν)
−1Hρ (I −HρHν)

−1

]
S and S̃ can be any matrix.

Proof: Write (3) in matrix form[
ỹ
ũ

]
= H

[
y
u

]
where

H =

[
I −Hν

−Hρ I

]

Let H̃ = H−1, then [
y
u

]
= H̃

[
ỹ
ũ

]
where H̃ can be calculated as

H̃ = H−1 =

[
(I −HνHρ)

−1 (I −HνHρ)
−1Hν

(I −HρHν)
−1Hρ (I −HρHν)

−1

]
From the definition of passivity index [1]

V̇ (x) ≤ (1 + ρν)uT y − νuTu− ρyT y =

[
y
u

]T
P

[
y
u

]
where S can be any matrix. Then

V̇ (x) ≤
[
y
u

]T
P

[
y
u

]
=

[
ỹ
ũ

]T
H̃TPH̃

[
ỹ
ũ

]
For the new passivity index pair (ρ̃, ν̃), we are requiring

a more loose boundary for V̇ (x)

V̇ (x) ≤ ũT ỹ − ν̃ũT ũ− ρ̃ỹT ỹ =

[
ỹ
ũ

]T
P̃

[
ỹ
ũ

]
where ρ̃ and ν̃ are the largest value to make the inequality
holds. Thus we are requiring

P̃ − H̃TPH̃ ≥ 0

Note that in the nonlinear case, passive subsystems are no
longer required to be scalar systems. Normally there is no
analytic way to derive ρ̃ and ν̃ separately from the matrix
inequality (7), but there are special cases:
1) OFP case

Only consider a feedback loop and ρ. In this case, Hν = 0,

ν = ν̃ = 0, H =

[
I 0

−Hρ I

]
, H̃ = H−1 =

[
I 0
Hρ I

]
.

For any S, let S̃ = S, then

P̃ − H̃TPH̃ =

[
−ρ̃I 1

2I + S
1
2I − ST 0

]

−
[
I HT

ρ

0 I

] [
−ρI 1

2I + S
1
2I − ST 0

] [
I 0
Hρ I

]

=

[
ρI − ρ̃I − 1

2 (Hρ +HT
ρ )− SHρ +HT

ρ S
T 0

0 0

]
Since −SHρ + HT

ρ S
T is a skew symmetric matrix,

xT (−SHρ + HT
ρ S

T )x = 0 for all x ∈ Rn, which means
we are requiring

ρI − ρ̃I − 1

2
(Hρ +HT

ρ ) ≥ 0

or

ρ̃ ≤ ρ− λ

(
Hρ +HT

ρ

2

)
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Because passivity index is defined as the maximal possible
value, the new OFP index ρ̃ of the interconnected distributed
system with respect to input-output pair (ũ, ỹ) is

ρ̃ = ρ̃max = ρ− λ

(
Hρ +HT

ρ

2

)
(8)

which is the same as (4). If we let ρ > 0, E = −Hρ, S = 0,
then ρ̃ can be positive if E is diagonally stable with D = 1

2I ,
that is, DE + ETD < 0. Since output passivity implies L2

stability, this result shows that a family of L2 stable systems
with a feedback connection can also be L2 stable, given E
diagonally stable. This conclusion can also be found in [6]
and [7], where each subsystem has a distinct passivity index
γi instead of a uniformed passivity index ρ as here.
2) IFP case

Only consider feedforward loop and ν. In this case,

Hρ = 0, ρ = ρ̃ = 0, H =

[
I −Hν

0 I

]
, H̃ = H−1 =[

I Hν

0 I

]
. For any S, let S̃ = S, then

P̃ − H̃TPH̃ =

[
0 1

2I + S
1
2I − ST −ν̃I

]

−
[

I 0
HT

ν I

] [
0 1

2I + S
1
2I − ST −νI

] [
I Hν

0 I

]

=

[
0 0
0 νI − ν̃I − 1

2 (Hν +HT
ν )−HT

ν S + STHν

]
where HT

ν S−STHν is a skew symmetric matrix. Similarly,
we are requiring

νI − ν̃I − 1

2
(Hν +HT

ν ) ≥ 0

i.e.

ν̃ ≤ ν − λ̄

(
Hν +HT

ν

2

)
thus the new IFP indices of the interconnected distributed
system with respect to input-output pair (ũ, ỹ) is

ν̃ = ν̃max = ν − λ̄

(
Hν +HT

ν

2

)
(9)

which is the same as (6).

IV. SYMMETRIC INTERCONNECTIONS

Symmetry existing in the structure of interconnection may
reduce the complexity of system analysis. For instance, if the
symmetry is linear symmetry, i.e. a diffeomorphism φg(x)
is on a sub-group of general linear group GL(n,Rn), then
the properties of matrices can be applied instantly.

A permutation of a set X = {1, . . . , p} is a one-to-one
mapping of X onto itself. Such a permutation is written,(

1 2 · · · p
k1 k2 · · · kp

)

which represents that 1 is mapped to k1, 2 is mapped to k2,
etc. Such permutation can be represented by φg(x) = Px,
where P is a orthogonal matrix with only one entry equal
to 1 in each row and column, and other entries 0. If all
subsystems have the same dynamic and the interconnection
matrix is invariant under the permutation, then a symmetry
exists in the multi-agent system.

Since the measurement of passivity indices only relies on
the eigenvalues of interconnection matrices, we can examine
the matrix properties and give a more explicit result.

A. Cyclic Symmetry

Cyclic interconnection matrix H = circ([v0 v1 · · · vm−1])
is invariant under cyclic permutation. We can calculate
the eigenvalue of H+HT

2 to derive explicit values for the
passivity indices.

λ(H) =

m−1∑
j=0

vjλ
j
i , i = 0, 1, . . . ,m− 1

where
λi = e

2πi
m

The sum of two cyclic matrices is still a cyclic matrix.

H +HT

2
= circ([v0

v1 + vm−1

2
· · · vm−1 + v1

2
])

λ

(
H +HT

2

)
= v0+

m−1∑
j=0

vj + vm−j

2
e

2πij
m , i = 0, . . . ,m−1

Then we can derive (8) and (9) more explicitly.

B. Star-shaped Symmetry

Intuitively, in a star-shaped symmetric group, subsystems
do not have interconnections with each other, but commute
with the center agent with different connection weights.

H =


h b1 . . . bm
c1 h . . . 0
...

...
. . .

...
cm 0 . . . h



H +HT

2
=


h b1+c1

2 . . . bm+cm
2

b1+c1
2 h . . . 0
...

...
. . .

...
bm+cm

2 0 . . . h


Then

λ

(
H +HT

2

)
= h± 1

2

√√√√ m∑
i=1

(bi + ci)2, 0 (10)

which will be shown as an example in Section V.
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C. Chain Symmetry

In chain symmetry, each subsystem has interconnections
with its two neighbors, except the leading and ending agents.

H = Tr(a, b, c) =


b c 0

a b
. . .

. . . . . . c
0 a b


λ(H) = b+ 2c

√
a

c
cos

iπ

m+ 1
, i = 1, . . . ,m

H +HT

2
= Tr(

a+ c

2
, b,

a+ c

2
)

λ(
H +HT

2
) = b+ (a+ c) cos

iπ

m+ 1
, i = 1, . . . ,m

V. EXAMPLE

Given a minimun phase linear multi-agent system G with
only output feedback interconnection matrix Hρ,

G(s) =


s+2
s+4 0 0 0

0 s+2
s+4 0 0

0 0 s+2
s+4 0

0 0 0 s+2
s+4



Hρ =


1 −1 4 3
3 1 0 0
2 0 1 0
1 0 0 1


From (5) and (10)

λ̄(
Hρ +HT

ρ

2
) = 4.7417

From Nyquist plots of G−1(jω) and G−1
cl (jω),

ρ =
1

2
min
ω∈R

λ
(
G−1(jω) +

[
G−1(jω)

]∗)
= 1

ρ̃ =
1

2
min
ω∈R

λ
(
G−1

cl (jω) +
[
G−1

cl (jω)
]∗)

= −3.7417

thus it can be verified that

ρ̃ = ρ− λ̄(
Hρ +HT

ρ

2
)

Here ρ̃ = −3.7417 < 0 means the multi-agent system G
is short of passivity after the feedback loop is closed. But if

Hρ =


−3 −1 4 3
3 −3 0 0
2 0 −3 0
1 0 0 −3


then passivity is preserved because

ρ̃ = ρ− λ̄(
Hρ +HT

ρ

2
) = 1− 0.7417 = 0.2583 > 0

VI. CONCLUSIONS

In this paper, the passivity indices for both linear and
nonlinear multi-agent systems with feedforward and feed-
back interconnections are derived. For linear systems, the
passivity indices are explicitly characterized, while the pas-
sivity indices in the nonlinear case are characterized by
a set of matrix inequalities. We also focus on symmetric
interconnections and specialize the passivity indices results
to this case. An illustrative example is also given.
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