# Pedestrian density and flow tracker using Raspberry PI

Abhishek Dubey Assistant Professor Computer Science and Computer Engineering Vanderbilt University

Senior Research Scientist Institute for Software Integrated Systems

Tel (615) 343-7472 Fax (615) 343-7440 1025 16th Avenue South|Nashville, TN 37212 www.isis.vanderbilt.edu



# The problem

- Understand the density of pedestrians in a region
  - Defined the amount of people per unit of area within a certain time interval
- Understand the flow of pedestrians between two locations
  - Defined as the number of people moving one way through an area of interest within a certain time interval.



## Why do we want this information?

- Optimize the traffic flow based on the expected pedestrian traffic.
- Automatically adjust the signal timings based on the crowd density near a traffic intersection.
- There are many other uses.



#### How do we do it?



Everybody has one of these





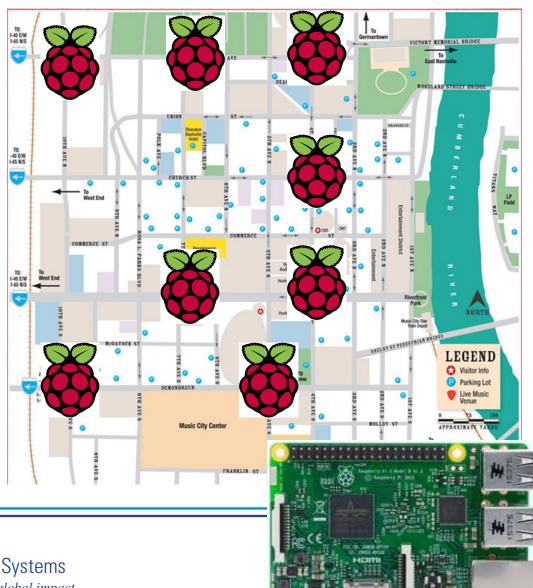
#### How do we do it?



Everybody has one of these



And they are connected. They also have a unique network address






#### How can we do it?

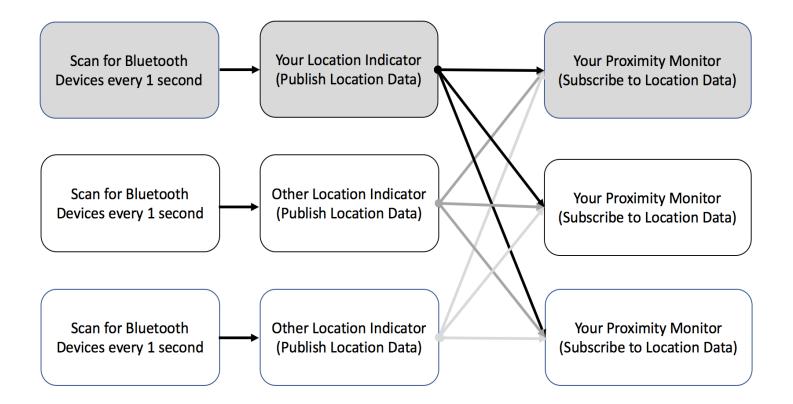


Track the address using a network of raspberry pis



Institute for Software Integrated Systems World-class, interdisciplinary research with global impact.

## Questions?




## **Location Announcer Example**

- Application
  - Location Indicator
    - Scans for Bluetooth devices every second
    - When device is found, publishes the information for others to see (LocationData)
  - Proximity Monitor
    - Listens for LocationData published messages (in other words, subscribes to these messages)
    - Discovery Service will match Publishers with Subscribers based on message labels (such as Location Data)
- Location Data
  - Unique ID for Bluetooth Device (media access control address or MAC), labeled as 'hash'
  - Computing Device ID, labeled as 'location'
  - Time when Bluetooth Device is found by computing device, labeled as 'timestamp'
  - Using this information each device can compute the flows and density.



## Location Announcer Example (cont.)







## Location Announcer Example (cont.)

To run the application, open three separate terminal windows

- 1. Start Discovery Service using the
  - /rundiscovery.sh [from the blue observer-collector folder] in a new terminal.
- 2. Start the Location Indication component (in LocationTransmitter actor)
  - cd riaps-app; ./runtransmitter.sh
- 3. Start the Proximity Monitor component

(in LocationReceiver actor)

cd riaps-app; ./runreceiver.sh

#### **Devices Found (Location Indicator)**

root@raspberrypi:/home/riaps/blueobserver-collector/riaps-app# riaps\_actor LocationAnnouncer LocationAnnouncer.json LocationTransmitter INF0:17:15:20,821:LocationIndicator:(PID 7294)-starting LocationIndicator, Fri Jul 28 17:15:20 2017 ERROR:17:15:21,833:riaps.run.devc:No response from devm service Resource temporarily unavailable INF0:17:16:25,931:LocationIndicator:7294:found{'timestamp': 1501280185.9272106, 'hash': 'D0:25:98:6A:68:F3', 'location': 'pi3'} INF0:17:16:37,143:LocationIndicator:7294:found{'timestamp': 1501280186.4210649, 'hash': '9C:20:7B:F2:64:7B', 'location': 'pi3'} INF0:17:16:44,392:LocationIndicator:7294:found{'timestamp': 1501280186.4210649, 'hash': '2C:B4:3A:08:78:54', 'location': 'pi3'}

#### Received Indication of Devices Found (Proximity Monitor)

riaps@raspberrypi:~/blueobserver-collector/riaps-app \$ sudo -E riaps\_actor LocationAnnouncer LocationAnnouncer.json LocationReceiver
[sudo] password for riaps:
INF0:17:16:11,108:ProximityMonitor:(PID 7316)-starting ProximityMonitor, Fri Jul 28 17:16:11 2017
ERROR:17:16:12,115:riaps.run.devc:No response from devm service Resource temporarily unavailable
INF0:17:16:25,933:ProximityMonitor:7316:on\_proximityupdate {'hash': 'D0:25:98:6A:68:F3', 'location': 'pi3', 'timestamp': 1501280185.9272106}
INF0:17:16:37,146:ProximityMonitor:7316:on\_proximityupdate {'hash': '9C:20:7B:F2:64:7B', 'location': 'pi3', 'timestamp': 1501280186.4210649}
INF0:17:16:44,394:ProximityMonitor:7316:on\_proximityupdate {'hash': '2C:B4:3A:08:78:54', 'location': 'pi3', 'timestamp': 1501280186.4210649}



#### Exercise

- Extend the model to identify and announce to all when a specific id has been seen.
- Steps to follow
  - declare a new message called announcement
  - Create a new publisher called announcer (message announcement) in the LocationAnnouncer/pmonitor.riaps Location indicator component.
  - Create a new subscriber called announcer in ProximityMonitor to receive the message.
  - Extend the process\_observation method in Location Indicator.py publish a message when a specific tag [see whiteboard] is found.
    - The publish message step will be self.announcer.send\_pyobj(msg) where msg has to be constructed like
      - msg="found tag"
  - Implement the on\_announcer method in ProximityMonitor.py. See the line observation = self.proximityupdate.recv\_pyobj() in the file to check how to receive the message.



## Questions?

