
 Precision Timed Infrastructure
Promoting Time to a First-Class Citizen in System Design

David Broman
broman@eecs.berkeley.edu

UC Berkeley and
Linköping University

National Workshop on the New Clockwork for Time-Critical Systems

October 26, 2012

PRET Infrastructure at Berkeley
Edward A. Lee
Aviral Shrivastava
Michael Zimmer

PRET Machine Collaborators and Alumni
Steven A. Edwards
Jeff Jensen
Sungjun Kim

Jan Reineke
Sanjit Seshia
Jia Zou

David Broman
Jian Cai
Hokeun Kim
Yooseong Kim

Isaac Liu
Slobadan Matic
Hiren Patel

Stephen A. Edwards
sedwards@cs.columbia.edu

Columbia University

Edward A. Lee
eal@eecs.berkeley.edu

UC Berkeley

2

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Agenda

Part II

 Precision Timed Infrastructure

Part III

Summary of
Challenges

Part I

Cyber-Physical
Systems

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

3

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Part I
Cyber-Physical Systems

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

4

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Modeling, Simulating, and Compiling
Cyber-Physical Systems

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Model

Modeling

Equation-based model

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Various models of computation (MoC)

Simulation with
timing properties

Modeling

5

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Cyber/Physical Co-Design Problem

Physical system
(the plant)

Cyber system:
Computation (embedded)

+ Networking

Rapid development of CPS with high confidence of
correctness is a co-design problem

The design of The design of

influence
each other

6

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Cyber/Physical Co-design

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Model

Modeling

Equation-based model

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Various models of computation (MoC)

Modeling
Model fidelity problem

“Ensuring that the model accurately

imitates the real system”

Physical
prototyping

Compiling/
synthesizing

Challenge #1:
Compile/synthesize the model’s cyber part, such that the simulated
model and the behavior of the real system coincide.
 The main challenge is to guarantee correct timing behavior.

7

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Part II
Precision Timed Infrastructure

8

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

A Story…

Success?

They have to purchase and store
microprocessors for at least 50 years
production and maintenance…

Fly-by-wire technology
controlled by software.

Why?

Apparently, the software does not
specify the behaviour that has
been validated and certified!

Safety critical "
Rigorous validation and certification

9

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

What is PRET?

Timing is not part of the software semantics
 Correct execution of programs (e.g., in C, C++, C#, Java, Scala,
Haskell, OCaml) has nothing to do with how long time things
takes to execute.

Programming
Model

Timing Dependent on the
Hardware Platform

Make time an abstraction within the
programming model

Traditional Approach

Programming
Model

Our Objective

Timing is independent of the hardware
platform (within certain constraints)

10

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

What is Precision Timed (PRET) Infrastructure?

PRET Infrastructure

•  PRET Machine (Computer Architecture)

•  PRET Compiler (Timing aware compilation)

•  PRET Language (Language with timing semantics)

A vision of making time first class citizen in both software
and hardware.

Focus until now has been on
PRET machines

11

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

What do mean by precision, predictable,
and repeatable timing?

Task
(clock cycles)

Focus on cyber-physical systems with real-time constraints

Time
(measured in e.g., ns)

Deadline

Hard task Firm task Soft task
Missed
deadline

Catastrophic
consequence

Result is useless, but
causes no damage

Result has still
some utility

Processor
frequency

Late miss
detection

Immediate miss
detection

Early miss
detection

Precision of timing
! Enable accuracy in

nano seconds

Repeatable timing
! Same platform: Testability
! Changing platform: Portability

Predictable timing
! Guarantee

correctness
(WCET)

12

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Languages with timing semantics

Modeling
Languages

Programming
Languages

Assembly
Languages

PRET-C
(Andalam et al., 2009)

Real-time Concurrent C
(Gehani and Ramamritham, 1991)

The assembly languages for todays
processors lack the notion of time

Giotto
(Henzinger, Horowitz,

and Kirsch, 2003)

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

13

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Precision Timed Machine

Rethink the ISA
Timing has to be a correctness property not only
a performance (quality) property

PRET Machine

•  Timing instructions for handling
missed deadline detection

•  Repeatable memory access time

•  Repeatable and predictable execution time

Java Optimized Processor (JOP)
(Schoeberl, 2008)

Related
Work

ARPRET
(Andalam et al., 2009)

Photo by Andrew Dunn, 2005

14

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Our Current PRET Architecture

PTARM, a soft core on Xilinx Virtex 5 FPGA

Hardware
thread Hardware

thread Hardware
thread Hardware

thread

registers

scratch
pad

memory

I/O devices

Thread-interleaved
Pipeline

4 threads, 5 stage

pipeline

Scratchpad
shared among

threads

DRAM main memory, separate banks per
thread

memory
memory main

memory

Xilinx Virtex 5, FPGA, 75 MHz

15

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Task
(clock cycles)

Time Deadline

Processor
frequency

Early miss
detection

Subset of ARMv4 ISA extended with timing
constructs

gt r1, r2 ; get time (ns)
 -- Code block --
adds r2, r2, #500 ; add 500 ns
adc r1, r1, #0
mtfd r1, r2 ; takes at most 500 ns
du r1, r2 ; takes at least 500 ns

At runtime – machine
error exception.
(Critical error mode –
“stop the train”)

Early – before execution.
Needs to be guaranteed
by static analysis of
program code

meet the final deadline (mtfd)

New instruction get time (gt)

delay until
(du).

16

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

PRET Infrastructure

Modeling
Languages

Programming
Languages

Assembly
Languages

Giotto
(Henzinger, Horowitz,

and Kirsch, 2003)

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

Semantic gap between
timed high level modeling
languages and PRET ISA

PRET
ISA

17

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

PRET Infrastructure

Modeling
Languages

Programming
Languages

Assembly
Languages

Giotto
(Henzinger, Horowitz,

and Kirsch, 2003)

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

Can we just compile
directly down to PTARM?

Lots of redundant work…

PRET
ISA

18

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

PRETIL vision

Modeling
Languages

Programming
Languages

Assembly
Languages

Giotto
(Henzinger, Horowitz,

and Kirsch, 2003)

Modelyze
(Broman and
Siek, 2012)

Ptolemy II
(Eker et al., 2003)

Simulink/
Stateflow
(Mathworks)

Modelica
(Modelica

Associations)

PRET
ISA

PRETIL
- Abstracting away memory the hierarchy
 (scratchpad, DRAM etc.)

- Expose timing constructs

ptC

C extended with high-
level timing constructs.

Can be seen both as an intermediate
and programming language

E machine
(Henzinger, and

Kirsch, 2007)

Challenge #3:
In an intermediate language,
what is the right abstraction
level for expressing semantics
of time and concurrency?

Challenge #2:
How do we guarantee the
correctness of synthesis/
compilation?

19

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Execution Time and Deadlines

Task
(clock cycles)

absolute deadline, di

Processor
frequency

Relative deadline Di

(derived from MTFD)

Release time, ri

Execution time, ei

Goal: Guarantee that ei ≤ Di

But, the execution time may
depend on:
•  Input data

(e.g., an image)
•  Machine states

(e.g., caches and pipelines)

20

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Worst-Case Execution Time (WCET)

Worst-case
execution time
(WCET) Static program analysis approach

•  Upper bound of WCET
•  Cannot handle any task

(conservative)

Challenges
•  To make it safe: upper_bound ≥ WCET
•  To make it tight: minimize (upper_bound – WCET)

Average-case
execution
time (ACET)

WCET overview
(Wilhelm et al., 2008)

Measurement-based approach
•  Cannot guarantee to find WCET
•  Applicable for any task

21

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Sub-problems for timing analysis

Flow analysis Low-level
Analysis

Loop bounds

 Infeasible paths

Analysis on Code

Timing of basic

blocks

 Caches
(Reineke, 2008)

Pipelines (Thesing, 2004)

Computation –
an ILP problem Implicit Path Enumeration

Technique (IPET)
(Li and Malik, 1995)

Is the end result the WCET?

No, the result is in clock cycles: Worst-Case no of Clock Cycles (WCCC)

Challenge #4:
How to make safe, tight, WCET
analysis to scale for large
complex tasks?

PRET dramatically simplifies low-
level analysis, but introduce a
scratchpad allocation problem.

22

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Relating clock cycles and time

Example 1:
10’000 cycles / 100 MHz = 0.1 ms

Based on assumptions:

Simple translation to worst-case execution time:
 WCCC / clock_frequency = WCET

•  The clock frequency is constant

(e.g., not the case for frequency/voltage scaling)

 •  The CPU’s clock (oscillator) is accurate (which is typically not the case).

Master
Clock Platform

Example 2: Clock synchronization
Clock freq. = 100MHz,
1 cycle = 10ns
Di = 0.5 ms
WCCC = 49 000
WCET= 0.49 ms

Real-time clock
RT = 0.51 ms after
computation finished

WCET < Di but RT > Di

Challenge #5:
How to relate worst-case
no of clock cycles with
real time, when clocks
are dynamically
corrected? Slave

Clock

23

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Part II
Summary of Challenges

24

Part II!
Precision Timed Infrastructure!

broman@eecs.berkeley.edu

Part III!
Summary of Challenges!

Part I!
Cyber-Physical Systems!

Summary of Challenges

#1: Compile/synthesize the model’s cyber part, such that the
simulated model and the behavior of the real system coincide.

#4: How to make safe,
tight, WCET analysis to
scale for large complex
tasks?

#5: How to relate worst-
case no of clock cycles
with real time, when
clocks are dynamically
corrected?

Thank you for listening!

#3: In an intermediate
language, what is the
right abstraction level for
expressing semantics of
time and concurrency?

#2: How do we guarantee
the correctness of
synthesis/compilation?

