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Cyber/Physical Co-Design Problem 

Physical system  
(the plant) 

Cyber system:  
Computation (embedded)  

+ Networking 
 

Rapid development of CPS with high confidence of 
correctness is a co-design problem 

The design of The design of 

influence  
each other 
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Cyber/Physical Co-design 

Physical system (the plant) Cyber system: Computation (embedded) + Networking 

Sensors 

Actuators 

System 

Model 

Modeling 

Equation-based model 

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

Various models of computation (MoC) 

Modeling 
Model fidelity problem 

 
“Ensuring that the model accurately  

imitates the real system” 

Physical 
prototyping 

Compiling/ 
synthesizing 

Challenge #1:  
Compile/synthesize the model’s cyber part, such that the simulated 
model and the behavior of the real system coincide.  
 The main challenge is to guarantee correct timing behavior.  
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A Story… 

Success? 
 

They have to purchase and store 
microprocessors for at least 50 years 
production and maintenance…  

 

Fly-by-wire technology 
controlled by software. 

 

Why? 
 

Apparently, the software does not 
specify the behaviour that has 
been validated and certified! 

Safety critical  "
Rigorous validation and certification 
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What is PRET? 

Timing is not part of the software semantics 
 Correct execution of programs (e.g., in C, C++, C#, Java, Scala, 
Haskell, OCaml) has nothing to do with how long time things 
takes to execute. 

 

Programming 
Model 

Timing Dependent on the 
Hardware Platform 

 

Make time an abstraction within the 
programming model 

 

Traditional Approach 

 

Programming 
Model 

Our Objective 

 

Timing is independent of the hardware 
platform (within certain constraints) 
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What is Precision Timed (PRET) Infrastructure? 

PRET Infrastructure 

•  PRET Machine (Computer Architecture) 

•  PRET Compiler (Timing aware compilation) 

•  PRET Language (Language with timing semantics) 

A vision of making time first class citizen in both software 
and hardware. 
 

Focus until now has been on 
PRET machines 
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What do mean by precision, predictable,  
and repeatable timing? 

Task 
(clock cycles) 

Focus on cyber-physical systems with real-time constraints  
 

Time 
(measured in e.g., ns) 

  
 

Deadline 

 

Hard task Firm task Soft task 
Missed 
deadline 

Catastrophic 
consequence  

Result is useless, but 
causes no damage 

Result has still 
some utility 

Processor  
frequency 

 

Late miss 
detection 

Immediate miss 
detection 

Early miss 
detection 

Precision of timing 
! Enable accuracy in  

nano seconds 

Repeatable timing 
! Same platform: Testability 
! Changing platform: Portability 

Predictable timing 
! Guarantee 

correctness 
(WCET) 
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Languages with timing semantics 

Modeling 
Languages 

Programming 
Languages 

Assembly 
Languages 

PRET-C  
(Andalam et al., 2009) 

Real-time Concurrent C   
(Gehani and Ramamritham, 1991) 

The assembly languages for todays 
processors lack the notion of time 

Giotto 
(Henzinger, Horowitz,  

and Kirsch, 2003) 

Modelyze 
(Broman and  
Siek, 2012) 

Ptolemy II 
(Eker et al., 2003) 

Simulink/ 
Stateflow 
(Mathworks) 

Modelica 
(Modelica  

Associations) 
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Precision Timed Machine 

Rethink the ISA 
Timing has to be a correctness property not only 
a performance (quality) property 

PRET Machine  

•  Timing instructions for handling  
missed deadline detection 

•  Repeatable memory access time 

•  Repeatable and predictable execution time  
  

Java Optimized Processor (JOP)   
(Schoeberl, 2008) 

Related  
Work 

ARPRET 
(Andalam et al., 2009) 

Photo by Andrew Dunn, 2005 
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Our Current PRET Architecture 

PTARM, a soft core on Xilinx Virtex 5 FPGA 

Hardware 
thread Hardware 

thread Hardware 
thread Hardware 

thread 

registers 

scratch 
pad 

memory 

I/O devices 

Thread-interleaved 
Pipeline 

 
4 threads, 5 stage 

pipeline 

Scratchpad 
shared among 

threads 
 

DRAM main memory, separate banks per 
thread 

 

memory 
memory main 

memory 

Xilinx Virtex 5, FPGA, 75 MHz 
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Task 
(clock cycles) 

Time Deadline 

 

Processor  
frequency 

 

Early miss 
detection 

Subset of ARMv4 ISA extended with timing 
constructs 

gt           r1, r2             ; get time (ns) 
   -- Code block -- 
adds  r2, r2, #500   ; add 500 ns 
adc  r1, r1, #0        
mtfd       r1, r2             ; takes at most 500 ns 
du    r1, r2             ; takes at least 500 ns 

At runtime – machine 
error exception. 
(Critical error mode – 
“stop the train”) 

Early – before execution. 
Needs to be guaranteed 
by static analysis of 
program code 

meet the final deadline (mtfd) 

New instruction get time (gt) 

delay until 
(du). 
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PRET Infrastructure 

Modeling 
Languages 

Programming 
Languages 

Assembly 
Languages 

Giotto 
(Henzinger, Horowitz,  

and Kirsch, 2003) 

Modelyze 
(Broman and  
Siek, 2012) 

Ptolemy II 
(Eker et al., 2003) 

Simulink/ 
Stateflow 
(Mathworks) 

Modelica 
(Modelica  

Associations) 

Semantic gap between 
timed high level modeling 
languages and PRET ISA 

PRET  
ISA 
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Modeling 
Languages 

Programming 
Languages 

Assembly 
Languages 

Giotto 
(Henzinger, Horowitz,  

and Kirsch, 2003) 

Modelyze 
(Broman and  
Siek, 2012) 

Ptolemy II 
(Eker et al., 2003) 

Simulink/ 
Stateflow 
(Mathworks) 

Modelica 
(Modelica  

Associations) 

Can we just compile 
directly down to PTARM? 

Lots of redundant work… 

PRET  
ISA 
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PRETIL vision 

Modeling 
Languages 

Programming 
Languages 

Assembly 
Languages 

Giotto 
(Henzinger, Horowitz,  

and Kirsch, 2003) 

Modelyze 
(Broman and  
Siek, 2012) 

Ptolemy II 
(Eker et al., 2003) 

Simulink/ 
Stateflow 
(Mathworks) 

Modelica 
(Modelica  

Associations) 

PRET  
ISA 

PRETIL 
- Abstracting away memory the hierarchy     
  (scratchpad, DRAM etc.) 

- Expose timing constructs 

ptC 

C extended with high- 
level timing constructs. 

Can be seen both as an intermediate  
and programming language 

E machine 
(Henzinger, and 

Kirsch, 2007) 

Challenge #3: 
In an intermediate language, 
what is the right abstraction 
level for expressing semantics 
of time and concurrency? 
 

Challenge #2: 
How do we guarantee the 
correctness of synthesis/
compilation? 
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Execution Time and Deadlines 

Task 
(clock cycles) 

 
absolute deadline, di 

 

 

Processor  
frequency 

 

Relative deadline Di 

(derived from MTFD) 

 
Release time, ri 

Execution time, ei 

Goal:  Guarantee that ei ≤ Di 

But, the execution time may 
depend on: 
•  Input data 

(e.g., an image) 
•  Machine states  

(e.g., caches and pipelines) 
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Worst-Case Execution Time (WCET) 

Worst-case  
execution time  
(WCET) Static program analysis approach 

•  Upper bound of WCET 
•  Cannot handle any task 

(conservative) 
 

Challenges 
•  To make it safe:    upper_bound ≥ WCET 
•  To make it tight:    minimize (upper_bound – WCET) 

Average-case  
execution  
time (ACET) 

WCET overview  
(Wilhelm et al., 2008) 

Measurement-based approach 
•  Cannot guarantee to find WCET 
•  Applicable for any task 
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Sub-problems for timing analysis 

Flow analysis Low-level 
Analysis 

Loop bounds 

 Infeasible paths 

 

Analysis on Code 

 
Timing of basic 

blocks  

 Caches  
(Reineke, 2008) 

Pipelines  (Thesing, 2004)  

 

Computation –  
an ILP problem Implicit Path Enumeration 

Technique (IPET)  
(Li and Malik, 1995) 

 
Is the end result the WCET? 

No, the result is in clock cycles: Worst-Case no of Clock Cycles (WCCC) 

Challenge #4: 
How to make safe, tight, WCET 
analysis to scale for large 
complex tasks? 

PRET dramatically simplifies low-
level analysis, but introduce a 
scratchpad allocation problem. 
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Relating clock cycles and time 

Example 1: 
10’000 cycles / 100 MHz  = 0.1 ms 

 
Based on assumptions: 
  

 

Simple translation to worst-case execution time: 
 WCCC / clock_frequency = WCET 

 
•  The clock frequency is constant  

(e.g., not the case for frequency/voltage scaling) 

 •  The CPU’s clock (oscillator) is accurate (which is typically not the case). 

 

Master 
Clock Platform 

Example 2: Clock synchronization 
Clock freq. = 100MHz,    
1 cycle = 10ns 
Di = 0.5 ms 
WCCC = 49 000 
WCET= 0.49 ms 

Real-time clock 
RT = 0.51 ms after 
computation finished 

WCET < Di    but    RT > Di         

Challenge #5: 
How to relate worst-case 
no of clock cycles with 
real time, when clocks 
are dynamically 
corrected?  Slave 

Clock 
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Summary of Challenges 
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Summary of Challenges 

#1: Compile/synthesize the model’s cyber part, such that the 
simulated model and the behavior of the real system coincide.  
 

#4: How to make safe, 
tight, WCET analysis to 
scale for large complex 
tasks? 

#5: How to relate worst-
case no of clock cycles 
with real time, when 
clocks are dynamically 
corrected?  

Thank you for listening! 

#3: In an intermediate 
language, what is the 
right abstraction level for 
expressing semantics of 
time and concurrency? 

#2: How do we guarantee 
the correctness of 
synthesis/compilation? 


