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Context: Cognitive Autonomy Project

• Highly “dynamic" environments: human and robot interactions.
• Runtime monitoring.
• Reason about behavior of agents.
• Predict how various agents will behave over time.

• In this talk: Predict future states of an agent from observations.
https://autonomy.unm.edu/



Safe Autonomy: Challenge

Will this UAV land safely?
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Approach # 1: Reachability Analysis
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Approach # 2: Predictive Monitoring
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(from CNN) (from 911security)(from CBS17)

Attack on Saudi oil facility Gatwick airport shutdown Fort Worth airfield intrusion



Runtime Verification
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[ Rozier et al. R2U2
Finkbeiner et al. RT-LOLA … ]



Problem Formulation
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Approach #1 : Extrapolating 
dynamics.

Predictive Runtime Monitoring of Vehicle Models Using Bayesian Estimation 
and Reachability Analysis
Yi Chou, Hansol Yoon, and Sriram Sankaranarayanan
Intl. Conference on Intelligent Robots and Systems (IROS), pp. 2111-2118, 2020.



Approach # 1: Dynamical Extrapolation.

Observations

𝑥 𝑡 + ℎ = 𝐹(𝑥 𝑡 , 𝑢 𝑡 )

t

u(t)

“Extrapolate” forward in time.

Infer how the system is being controlled. [Chou Yi + Hansol Yoon + Sank. IROS 2020]
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Dataset: 45 minutes of UAV flight 
over eastern Colorado.

4 seconds 6 seconds

Bayesian Predictive Monitoring



Approach # 2 : Intent Inference
Predictive Runtime Monitoring for Mobile Robots using Logic-Based Bayesian Intent Inference
Hansol Yoon, and Sriram Sankaranarayanan
In International Conference on Robotics and Automation (ICRA), pp. 8565-8571, 2021.



Can we do better?
’s intent: Go to A & Avoid mountain



Intent Inference

Source: Merriam-Webster Online

• Robot’s intents are drawn from a finite set.
• Intents can change over time. 
• Restricted class of temporal logic:  Reach-while avoid



Intent Inference: Conclusions

• Intents vastly improve upon extrapolation of past trajectories.

• Longer time horizons with better accuracy.

• Drawback # 1: Simplified robot dynamics.

• Drawback # 2: Restrictive language for intents.



Approach # 3 : Hierarchical Intent 
Inference



Hierarchical Intent Inference
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Reach R3 while avoiding R2.

What happens after robot reaches R2?

Immediate Intent/Goal vs. Long Term Goals



Hierarchical Intent Inference

• Idea: Hypothesize long term intents using temporal logic.
• “Most” automation tasks can be expressed in temporal logic.
• Claudio Menghi et al. Specification Patterns for Robotic Missions, IEEE Trans. 

Software Engg.

• Challenge: Extend notions of “cost” and “rationality” to temporal logic 
properties.
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