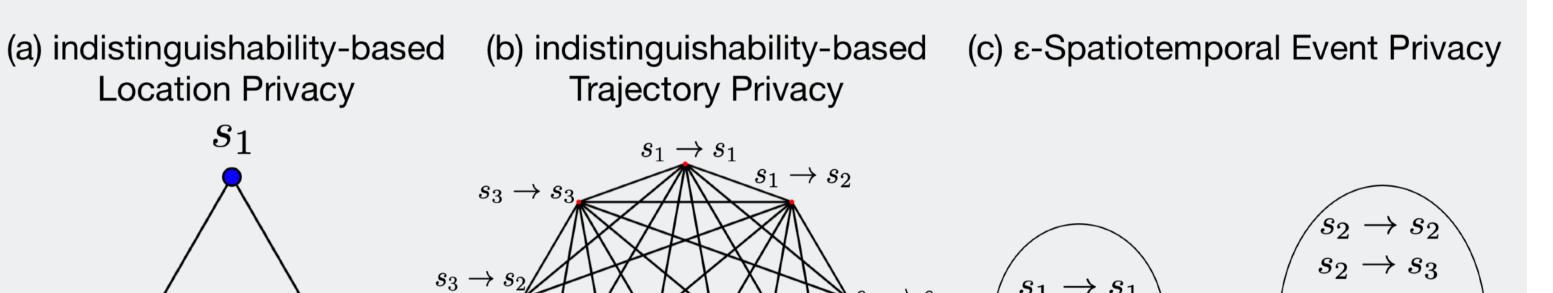
PriSTE: Protecting Spatiotemporal Event Privacy in Continuous LBS

EMORY


Yang Cao*#, Yonghui Xiao&, Li Xiong#, Liquan Bai#, Masatoshi Yoshikawa* * Kyoto University, # Emory University, & Google Inc. contact: yang@i.kyoto-u.ac.jp

- When a user's perturbed locations are released continuously, existing LPPMs may not protect users' secrets about spatiotemporal activities.
- The secrets could be "visited hospital in the last week" or "regularly commuting between Address 1 and Address 2 every morning and afternoon" (it is easy to infer that Addresses 1 and 2 may be home and office), which we call it spatiotemporal event.

Spatiotemporal Event Privacy vs. Location Privacy

 Although the definition of spatiotemporal event is more general than a single location or a trajectory, the privacy metrics between spatiotemporal event privacy and location privacy can be orthogonal.

Spatial dimension			Temporal dimension			Spatial and Temporal		
	u^1	u^2		u^1	u^2		u^1	u^2
s_1		u^2 \circ	s_1	O <u>A</u>				
s_2		0	s_2	0	0	s_2		
$(a) (u^1$	$= s_1)$	$\wedge \left(u^1 = s_2 \right)$	$(c) (u^1 =$	$= s_1)$ /	$\wedge (u^2 = s_1)$		·	$(u^1 = s_2)) \ (u^2 = s_2))$
	u^1	n^2		u^1	u^2		u^1	u^2
s_1	ф ф	u^2 \circ	s_1	©Ç	<u>₽</u> ₽●			_
s_2		0	s_2	0	0	s_2		
$(b) (u^1$	$= s_1)$	$\lor (u^1 = s_2)$					<i>,</i>	$(u^1 = s_2))$ $(u^2 = s_2))$

Fig. 1: Six examples of spatiotemporal events.

Event (a) is always false.

Event (b) indicates a sensitive region.

Event (c) represents a sensitive trajectory.

Event (d) represents the *presence or not* in a sensitive location.

Event (e) indicates a *mobility pattern* passing through sensitive regions. Event (f) indicates the *presence or not* in a sensitive region.

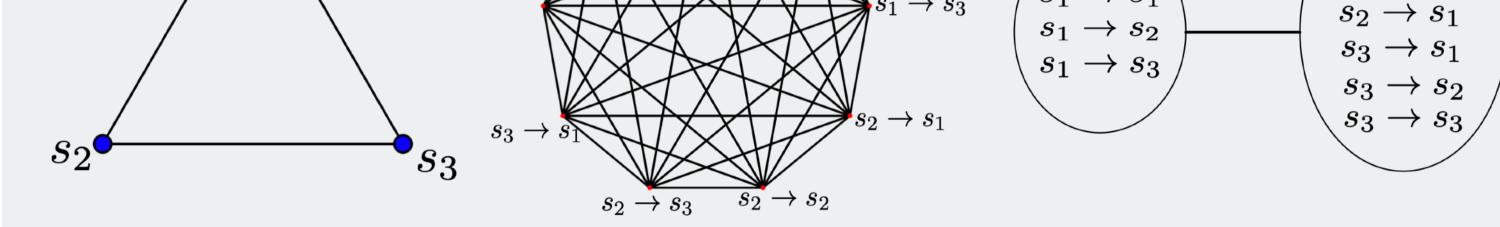


Fig.3 Illustration of indistinguishability-based privacy metrics.

Given any Event(s) :

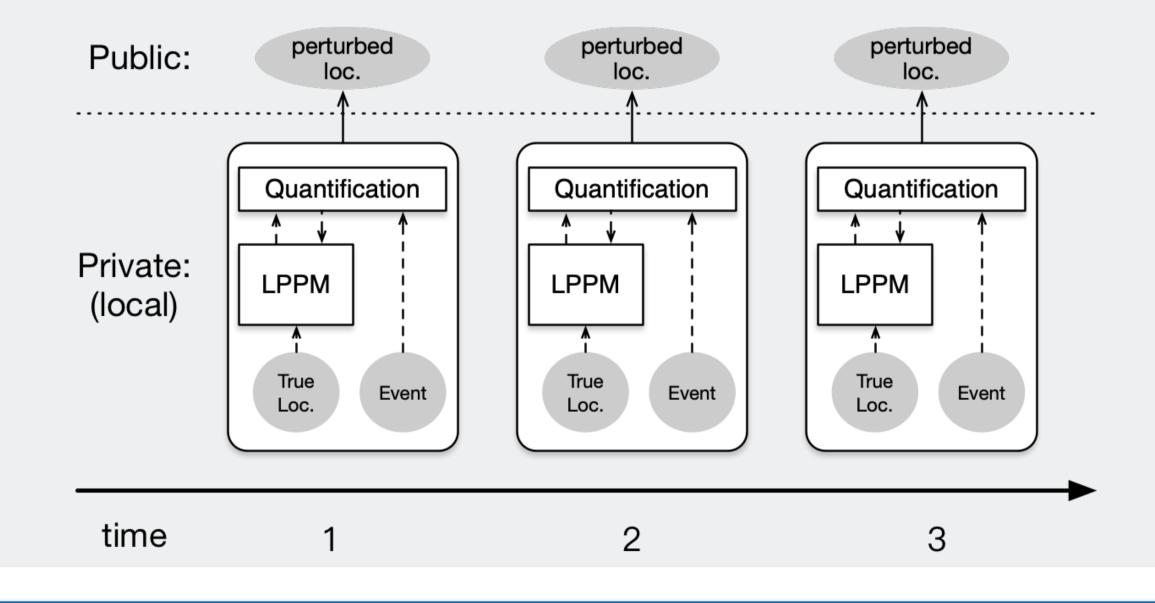
 ϵ -Spatiotemporal Event Privacy $\Rightarrow \epsilon$ -Geo-Indistinguishability ϵ -Spatiotemporal Event Privacy $\Leftrightarrow \epsilon$ -Geo-Indistinguishability

- The best of two worlds :
 - * Location privacy = general protection against unknown risks when sharing location with the third parties,
 - * spatiotemporal event privacy = flexible and customizable protection which may prevent against profiling attacks.

Formalize Spatiotemporal Event Privacy

PriSTE framework

Define Spatiotemporal Event


- We call $u^t = s_i$ location-time predicate, whose value can be *true* or *false* depending on the ground truth of u^t .
- A spatiotemporal event is defined as a Boolean expression of the location-time predicates using the AND, OR, NOT operators, denoted by ∧, ∨, ¬, respectively.

Spatiotemporal Event	Boolean Expression				
single location event	$u^t = s_i$				
PRESENCE at a single location	$(u^1 = s_i) \lor (u^2 = s_i) \lor \cdots \lor (u^T = s_i)$				
region event	$(u^t = s_i) \lor (u^t = s_j) \lor \cdots, \lor (u^t = s_k)$				
single trajectory event	$(u^1 = s_i) \land (u^2 = s_j) \land \cdots, \land (u^n = s_k)$				
PATTERN of trajectories	$((u^1 = s_i) \lor (u^1 = s_j) \lor \cdots, \lor (u^1 = s_k)) \land \cdots$				
	$\wedge ((u^n = s_l) \lor (u^n = s_m) \lor \cdots, (u^n = s_n))$				

Fig. 2: Examples of Spatiotemporal Events.

ε-Spatiotemporal Event Privacy

- PriSTE (Private Spatiotemporal Event)
 - * employ existing LPPM (e.g., Planar Laplace M. for Geo-I)
 - * quantification algorithms
 - * calibrate ε of PLM for ε -Spatiotemporal Event Privacy.

Experiments

- A stricter LPPM satisfies a certain level of spatiotemporal event privacy without any change.
- a more loose LPPM may need to reduce its privacy budget
- A mechanism preserves -Spatiotemporal Event Privacy for a spatiotemporal event if at any timestamp t in {1, · · · , T} given any observations {o₁, · · · , o_t }

 $\Pr(o_1, \dots, o_t | Event) \le e^{\epsilon} \Pr(o_1, \dots, o_t | \neg Event)$

where *Event* is a logic variable about the user-specified spatiotemporal event and $\neg Event$ denotes its negation.

significantly for protecting the same event.

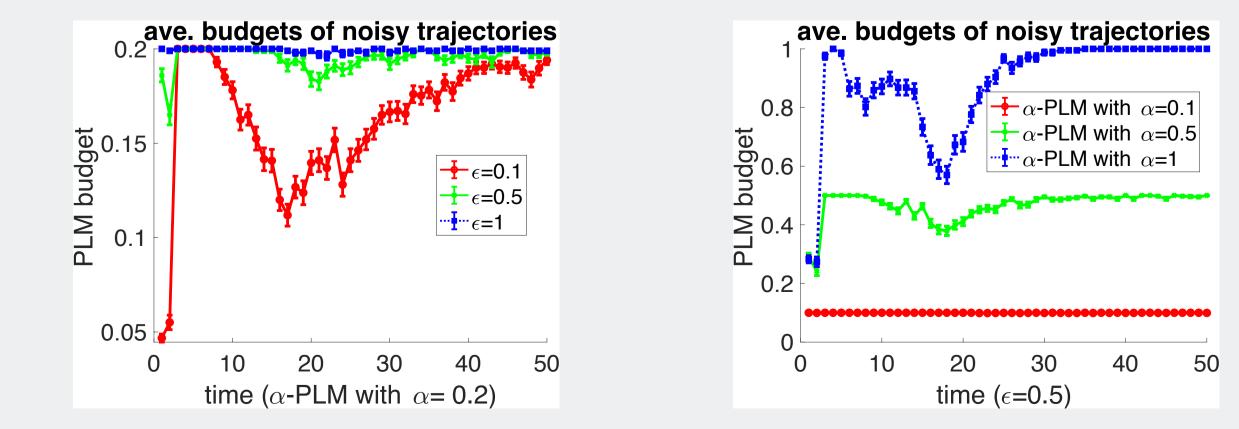


Fig.4 PRESENCE(S = $\{1 : 10\}, T = \{16 : 20\}$)

See more details in a long version of our paper: <u>https://arxiv.org/abs/1810.09152</u>

Kyoto University & Emory University

This work is supported by NSF under grant No. 1618932, the AFOSR DDDAS program under grant FA9550-121-0240, the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (S) No. 17H06099 and (A) No. 18H04093.