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Growing Use of Machine Learning/AI in 
Cyber-Physical Systems  
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Many Safety-Critical Systems 
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AI / Cognitive Systems / Learning Systems  

Formal Methods / Verification 

Computational Systems that attempt to mimic 
aspects of human intelligence, including especially 
the ability to learn from experience. 

Computational Proof Techniques: SAT Solving, SMT Solving, 
Directed simulation, Model checking, Theorem proving, … 

System S 
Environment E 
Specification ϕ 

YES [+ proof] 
Does S || E  
satisfy ϕ? 

NO  
[+ counterexample] 



Challenges for Verified AI   
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System S 
Environment E 
Specification ϕ 

YES [+ proof] 
Does S || E  
satisfy ϕ? 

NO  
[+ counterexample] 

S. A. Seshia, D. Sadigh, S. S. Sastry.   
Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514. 

Design Correct-by-
Construction 

instead? 
Counterexamples, etc. 
from Rich Signal Spaces? 



Principle 1: Environment Modeling --  
Introspection and Action 

S. A. Seshia 5 



#1: Introspective Environment Modeling 
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Impossible to model 
all possible scenarios 

Approach: Introspect on System to Model the Environment 

Identify:  (i) Interface between System & Environment,                            
(ii) (Weakest) Assumptions needed to Guarantee Safety/Correctness 

Algorithmic techniques to 
generate weakest interface 
assumptions and monitor them 
at run-time for potential 
violation/mitigation 

[Li, Sadigh, Sastry, Seshia; TACAS’14] 



#2: Active Data Gathering and Learning 

S. A. Seshia 7 

Monitor and Interact with the Environment, 
Offline and Online, to Model It. 

Distracted Human Attentive Human 

[Sadigh et al., 
IROS’16] 



Principle 2: Formal Specification --  
Go System Level 
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Use a System-Level Specification 
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“Verify the Deep Neural Network Object Detector” 

“Verify the System containing the Deep Neural Network” 

Formally Specify the End-to-End Behavior of the System 

Spec: G (dist(ego vehicle, env object) > ∆) 

Controller Plant 

Environment 

Learning-Based Perception 



Principle 3: Learning Systems 
Complexity --  

Abstract and Explain 

S. A. Seshia 10 

Principle 4: Efficient Training, Testing, 
and Verification --  

Verification-Guided Analysis and 
Improvisation 



The Problem: Verify Automatic Emergency 
Braking System (AEBS) 
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AEBS 
Controller Plant 

Environment 

Deep Learning-Based Object Detection 

Spec:  G (dist(ego vehicle, env object) > ∆) 

• Controller, Plant, Env models in Matlab/Simulink 
• Multiple Deep Neural Networks: Inception-v3, AlexNet, … 



Our Approach: Combine Temporal Logic CPS 
Falsifier with ML Analyzer 
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CPS 
Falsifier 

ML 
Analyzer 

Spec 

Model 

Env params that 
violate spec 

Sensor inputs 
(images) 

Error? 
• CPS Falsifier uses abstraction of 

ML component 
• Optimistic analysis: assume ML 

classifier is always correct 
• Pessimistic analysis: assume  

classifier is always wrong 
• Difference is the region of 

interest where output of the ML 
component “matters” 

Compositional:  
CPS Falsifier and ML Analyzer can be designed and run  

independently (& communicate)! 

S. A. Seshia 



Machine Learning Analyzer 
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Systematically Explore Region of Interest in the Image (Sensor) Space 

Feature space 𝑋𝑋� 

brightness car z-pos 

Abstraction map 

brightness 
car z-pos 

car x-pos 

Abstract space A 
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x 

Abstract space A 

𝛾𝛾(𝑎𝑎) 

𝑎𝑎 

Neural network 
𝑦𝑦 ∈ {𝑐𝑐𝑐𝑐𝑐𝑐, ¬𝑐𝑐𝑐𝑐𝑐𝑐} 

𝑥𝑥 

✓ 

 

✓ 

 
✕ 

 

✕ 

 

✕ 

 ✓ 

 

✓ 

 
✓ 

 
✓ 

 

✕ 

 

Systematic  
Sampling (low-discrepancy sampling) 



Sample Result 
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Inception-v3 
Neural 

Network 
(pre-trained on 
ImageNet using 

TensorFlow) 

Misclassifications 

This misclassification may not be of concern 



Sample Result 
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Inception-v3 
Neural 

Network 
(pre-trained on 
ImageNet using 

TensorFlow) 

Misclassifications 

Corner case 
Image   

But this one is a real 
hazard! 



Principle 5: Correct-by-Construction --  
Formal Inductive Synthesis 
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Correct-by-Construction Design with Formal 
Inductive Synthesis 

Inductive Synthesis: Learning from Examples (ML) 
Formal Inductive Synthesis: Learn from Examples while 
satisfying a Formal Specification 
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[Jha & Seshia, “A Theory of Formal Synthesis via Inductive Learning”, 2015, 
Acta Informatica 2017.] 

Key Idea:  Oracle-Guided Learning 
Combine Learner with Oracle (e.g., Verifier) that answers Learner’s Queries 

LEARNER ORACLE 

query 

response 



Verifier-Guided Training of Deep Neural Networks 

• Instance of Oracle-Guided Inductive Synthesis 
• Oracle is Verifier (CPSML Falsifier) used to perform 

counterexample-guided training of DNNs 
• Substantially increase accuracy with only few 

additional examples 
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DEEP NEURAL 
NETWORK 

FALSIFIER 
(CPS + ML) 

Learned Classifier 



Towards Verified Learning-based CPS 
Challenges 

1. Environment (incl.    
Human) Modeling 

2. Specification 
 

3. Learning Systems 
Complexity 

4. Efficient Training,    
Testing, Verification 

5. Design for Correctness 
 

Principles 
Data-Driven, Introspective 
Environment Modeling 
System-Level Specification; 
Robustness/Quantitative Spec. 
 
Abstract & Explain 
Verification-Guided, Adversarial 
Analysis and Improvisation 
Formal Inductive Synthesis 
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S. A. Seshia, D. Sadigh, S. S. Sastry. Towards Verified Artificial Intelligence. 
July 2016. https://arxiv.org/abs/1606.08514. 

Exciting Times Ahead!!!  Thank you! 


	Principles for Verified                       Learning-Based CPS
	Growing Use of Machine Learning/AI in Cyber-Physical Systems 
	Slide Number 3
	Challenges for Verified AI  
	Principle 1: Environment Modeling -- �Introspection and Action
	#1: Introspective Environment Modeling
	#2: Active Data Gathering and Learning
	Principle 2: Formal Specification -- �Go System Level
	Use a System-Level Specification
	Principle 3: Learning Systems Complexity -- �Abstract and Explain
	The Problem: Verify Automatic Emergency Braking System (AEBS)
	Our Approach: Combine Temporal Logic CPS Falsifier with ML Analyzer
	Machine Learning Analyzer
	Sample Result
	Sample Result
	Principle 5: Correct-by-Construction -- �Formal Inductive Synthesis
	Correct-by-Construction Design with Formal Inductive Synthesis
	Verifier-Guided Training of Deep Neural Networks
	Towards Verified Learning-based CPS

