02/25/2022

e Q&A from Homework 4
e Review of
e 2020 Midterm Exam
e 2021 Midterm Exam

2020 Midterm Exam:

1. (10 pts.) We consider disjoint sets and wish to perform two operations on these sets.

(1) Union: If S; and S; are two disjoint sets, then their union is S; US; = {x | x isin S; or
S;}.

(2) Find(i): Given an element i, find the set containing 7.

We assume that each set is represented using a directed tree such that nodes are linked from
children to parents. Three algorithms to perform the union operation UNION(S;, S;) were
discussed in class. Now, consider the following algorithm.

Algorithm 4: Make the root of the tree with lower depth be a son of the root of the tree
with higher depth. (If two trees have the same depth, choose arbitrarily.)

Show that UNION can be done O(1) time and FIN D can be done in O(logn) time.

Sol. Let T be a tree with n nodes created by Algorithm 4. We will prove that depth(T) <
|logn| + 1 using induction on n. If n = 1, it is ftrivial, and assume that the claim is true
for all trees with 7 nodes where ¢+ < n — 1. Now consider a tree 7" with n nodes where
UNION (S, S;) is the last UNION operation to form 7". Assume m < n —m (ie., m < 3)
where that the number of nodes in S and S, respectively, are n — m and m. There are two
cases considered.

Case 1. depth(Sy) > depth(S;): In this case, the root of S; becomes a son of the root of Sj.
Hence, depth(T) = max{depth(S), depth(S;)+ 1}. Note that by induction hypothesis,
depth(Sy) < |log(n—m)|+1 < |logn]|+1. It is also note that depth(S;) < |logm|+1 <
llog 5| +1 < [logn|. Therefore, depth(T') < |logn] + 1.

Case 2. depth(Sk) < depth(S;): In this case, the root of Si becomes a son of the root of S;.
Note that depth(T') = max{depth(S;), depth(Sy)+1}. Since depth(Sk)+1 < depth(S;),
depth(T') = depth(S;). By induction hypothesis, depth(S;) < [logm] +1 < [logn]| + 1.
Therefore, depth(T) < |logn| + 1.

2. (10 pts.) The prim’s algorithm works correctly when an arbitrary vertex is chosen as a start
vertex. Assume that there is only one edge say e; whose weight is smaller than any other
edges. Prove that e; is always included in a tree generated by the Prim’s algorithm regardless
which vertex is chosen as a start vertex.

Sol. Let T be a MST but does not include e;. Consider G’ = T'+{e;}. Note that G’ now has a
cycle C' that includes e;. We now define a new spanning tree 77 C G’ such that 77 = G’ — {¢’}
where €’ is an arbitrary edge in C' and ¢’ # e;. As w(e’) > w(ey), w(T") > w(T); hence, T"
cannot be a MST. Therefore, e; must be included in any MST.

3. (10 pts.) We are given a list of n elements in non-decreasing order: A :a; < as < --- < a,, and
we are also given a number p. Assume that the sum of the elements in A is at least p. We
would like to compute a subset A’ of A such that (i) the sum of the elements in A’ is at least
p and (ii) satisfying (i), the number of elements in A" is as small as possible. (For example,
if A=1{1,2,3,5,7,8,9} and p = 20, then A’ = {3,8,9} is a solution.) Give an O(logn) time
algorithm that solves this problem. Note: You may do some preprocessing using O(n)
time.

Sol. Note that this problem when the given list A is in an arbitrary order can be solved in
O(n) time as shown in #8 of Homework 1. A main idea in the proposed O(n) time algorithm

was the following:

e Suppose there exits a subset 7' C A such that |T'| = k& and sum(T) > p where sum(T)
denotes the sum of the elements in a subset 1" C A. Then, a subset 7' containing the k

largest elements of A must be such that sum(7T) > p.

Before we describe algorithm, we do the following preprocessing, which takes O(n) time.

Set S(n+ 1) = 0.
fori=nto 1 do

S(i)=S@G+1)+ ay,
endfor

With S(i)'s already computed, a solution A" = {a;, a;,.---.,a,} can be found in O(log n) time
using a binary search, where j is the largest index such that S(j) > p but S(j +1) < p.

4. (10 pts.) Consider the following problem for n jobs, each one of which takes exactly one minute
to complete. At any time T'=1,2,3,---, we can execute exactly one job. Each job 7 earns a
profit of p; dollars if and only if it is executed no later than time d;, where d; is given as an
input. Assume that d; is an integer value. The problem is to schedule the jobs to maximize
the profit.

Consider the following greedy strategy: At each time 7', pick the most-profitable one among
jobs whose deadline is T or later. For example, consider n = 4, profits P = (50, 10, 15, 30)
and deadlines D = (2,1,1,2). This greedy strategy will yield the following solution: job 1 is
first picked, and then job 4, resulting in the total profit $80.

Prove or disprove this greedy algorithm finds an optimal solution.

Sol. See the following example to disprove: P = (50, 10, 15,30) and deadlines D = (2,2,1,1).
The greedy strategy will pick job 1 first, and then pick job 2, resulting in total profit 60.
However, an optimal solution is to first pick job 4 and then pick job 1, resulting in total profit
80.

HW3, Q1

5. (5 pts each) Consider the following graph G. Show all your work for each of the following
problems.

(a) Find a minimum spanning tree of G obtained using the Prim’s algorithm with 3 as the start
node.

(b) Find a minimum spanning tree of G obtained using the Kruskal’s algorithm.

(c) Apply the Dikstra’s shortest path algorithm and find a shortest path in G from vertex 5 to
every other vertex. Note that each edge e = (u,v) may be used in each direction in your
path, i.e., you may assume two directed edges (u,v) and (v,u) exist in your graph with
w(u,v) = w(v,u) = w(e).

L

Figure 1: G

(a) Find a minimum spanning tree of G obtained using the Prim’s algorithm with 3 as the start
node.

A

Figure 1: G

(b) Find a minimum spanning tree of G obtained using the Kruskal’s algorithm.

A

Figure 1: G

10

(c) Apply the Dikstra’s shortest path algorithm and find a shortest path in G from vertex 5 to
every other vertex. Note that each edge e = (u,v) may be used in each direction in your
path, i.e., you may assume two directed edges (u,v) and (v,u) exist in your graph with
w(u,v) =w(v,u) = we).

A

Figure 1: G

11

7. (5 pts.) Construct the Huffman codes for seven characters ay, - - -, a7 with relative frequencies
(Q1’ T Q7) — (1* 37 33 6: 77 97 9)

Sol. ¢, = 0000, g» = 0001, g3 = 001, ¢, = 100, g5 = 101, g = 01, g7 = 11.

12

8. (10 pts.) Consider a sequence of numbers A = (5,5,6,5,1,9,5,4,5,8,2,5,9,4). Show how Par-
tition algorithm works for A assuming that the first element 5 is the pivot. Upon completion

of the algorithm, the numbers in A should be partitioned into two group A; and As such that
Ai={a€ A|a<5} and and Ay = {a € A| a > 5}. Show all your work.

13

9. (10 pts.) You are given an array A of n positive integers in an arbitrary order and an arbitrary
integer k, where 1 < k < n. Design an algorithm that outputs £ smallest odd integers. If the
number of odd integers in A is less than k&, you should report all odd integers. For example,
if A=102,17,3,10,28,5,9,4,12,13,7] and k = 3, your output should be 3,5, 9.

Note: Your algorithm should run in O(n) time, i.e., O(kn) is not acceptable.

Sol. Let A’ ={a € A| aisodd.} Find the kth smallest element, say z, of A’ using the linear
time Select algorithm. Then report S ={a € A’ | a < x}.

So for the given example A = [2,17,3,10,28,5,9,4,12,13,7], A’ ={17,3,5,9,13,7}. The 3rd
smallest element in A" is 9. We report S = {3,5,9}.

14

10. (10 pts.) A forest is defined to be a cycless graph, i.e., a graph that may have more than one
component, but each component does not include a cycle (i.e., each component is a tree). Let
G(V, E) be a connected edge-weighted graph.

Given Vo = {vi,va,---, v} € V(G), design an algorithm to find a forest with exactly &
components such that (i) each component contains exactly one of the vertices in Vj, (ii) each
vertex of G is included in exactly one of £ components, and (iii) satisfying (i) and (ii), the
total edge weight over all & components is minimized.

Sol. (1) We construct an edge-weighted graph G’ from G such that V(G’) = V(G) U {vo}
and F(G") = E(G)U{(vo,v;) | 1 <i <k} where w(vg,v;) =€ for 1 <i < k. (2) Then, find a
MST T of G'. We then note that {(vg,v1), (vo,v2),- -, (vo,vk)} C E(T). (3) Now, we remove
k edges (v, v1), (vo,v2),- -+, (v, v;) from T, resulting in a forest of & components, a desired
solution.

15

2021 Midterm Exam:

1. (5 pts. each)

(a) Using the definitions of O (big-Oh) and €2 (Omega) notations, prove that:
If g(n) = Q((f(n)) and g(n) = O(h(n)), then h(n) = Q(f(n)).

Sol. Since g(n) = Q((f(n)) and g(n) = O(h(n)), there must be constants ¢y, co, ny, and ngy
such that g(n) > ¢;f(n) for any n > n; and g(n) < coh(n) for any n > nsy, which imply that
g(n) > c¢1f(n) for any n > ng and h(n) > C—l2g(n) for any n > ng, where ng = max{ny,ns}.
Note that h(n) > ég(n), when g(n) is substituted by g(n) > ¢; f(n), implies h(n) > éclf(n).
Hence, we have h(n) > cf(n), where ¢ = 1, for any n > ng. Therefore, h(n) = Q(f(n).

16

(b) Prove v/n # O(log, n).
Sol. Suppose /n = O(logyn). We then have \/n < clogy n for any n > ng, where ¢ and ng

are some constants, which implies that ; O‘g/fn < ¢ for any n > ny, i..e,
lim <c

n— 00 log2 n

1
However, by the L'Hospital’s rule, lim,,_o logﬂn = lim,, oo —2"—.
2 nloge 2
1
. oW log, 2 . log, 2
Since —2/~ — ‘/ﬁgge and lim,,—yeo ‘/ﬁ;ge = 00,
nloge 2
lim = 00,
Nn—00 10g2 n

a contradiction. Therefore, \/n # O(logyn).

17

2. (10 pts) You have n coins such that n — 2 coins are of the same weight and two coins weigh
more than these n — 2 coins. Two heavier coins may be of the same weight, or their weights
may be different. You have a balance scale: you can put any number of coins on each side
of the scale at one time, and it will tell you if the two sides weigh the same, or which side is
lighter if they do not weigh the same.

Give an algorithm for finding the two heavier coins using O(logn) weighings. Note that n is
an arbitrary integer and your algorithm should consider all possible cases of n such as n is

odd, even, or any other conditions.

Sol. We will first address the case when only one coin is heavier than the others in a certain

group. (This is what we discussed in class.)

(A) Assume only one coin is heavier than the others. In this case, if n is even, we divided
them into two groups with each % coins where one group must weigh more than the other,
and the group the heavier coin belongs to is identified. If n is odd, we set aside an arbitrary
coin and divide n — 1 coins into two groups with each "T_l coins. If two groups weigh same,
the coin not in any of two groups is identified as the heavier one. Otherwise, the group where

the heavier coin belong to is identified.

(B) Now, assume that two coins are heavier than the other n — 2 coins where two heavier
coins may have same or different weights. We consider two cases.

(B1) Suppose n is even. We then divide them into two groups, each with & coins. If two
groups weigh same, it must be that two heavier coins have the same weight and each belongs

to each group. So we can identify the heavier one from each group using the process discussed

in (A).

Now, assume that one group, say g;, weighs more than the other group, say ¢g». Then, there
are two possible cases: (i) g1 include both heavier coins, and (ii) two heavier coins have
different weights such that the heaviest one belongs to ¢g; and the second heaviest one belongs
to go. For case (i), the problem can be recursively solved with a smaller size of input by
following process in (B). For case (ii), the problem can be solved using the process discussed
in (A). So we need to identify which case holds, and it can be done as follows.

Take g2 and divide them into two groups of same size (set aside one coin if go has an odd
number of coins), and weigh them. If one group weighs more, then it is clear that g, also
include a heavier coin, i.e., case (ii) holds. If two groups weigh same and the number of coins
in g9 is even, then case (i) holds. If two groups weigh same and the number of coins in gs is
odd, we can also easily identify whether the coin set aside weighs more, which is case (ii) or

same with other coins which is case (i).

19

(B2) Suppose n is odd. In this case, by setting aside one coin, we can divide n — 1 coins into
two groups of same size and identify two heavier coins by following the process discussed in

(B1).
To analyze the time complexity, we note that the search space is reduced by a half after each

iteration; hence, the whole process can be done in O(logn) time.

20

3. (5 pts. each) Let A be a list of m elements and B be a list of n elements. Given an integer k,
1 < k < min(m,n), give an algorithm to find the kth smallest element in AU B.

(a) Each list in A and B is in an arbitrary order. Your algorithm must run in O(max(m,n)) time.

Sol. First, we simply merge (or concatenate) A and B into a single file, which is in an
arbitrary order, in O(n+m) time and then apply the linear-time Select algorithm to find the
kth smallest element in O(m + n) time. Since O(n +m) = O(max(m,n)), the whole process

can be done in O(max(m,n)) time.

21

(b) Each list in A and B is in a non-decreasing order. Your algorithm must run in O(log(max(m, n)))

time.

Sol. First note that we only need to keep only the first k£ elements of A and the first £
elements of B, and discard the remaining elements. So we can assume that |A| = |B| = k,
and the objective is to find the kth smallest element, i.e., the median of A U B. Note that
this problem was discussed with solutions in #2(a) of Binary Search Variations of Practice
Problem Set.

To explain the main idea of the algorithm, let’s first assume £ is even and let A(g) = a and
B(%) = b. If a = b, we are done.

e Suppose a < b. We can then remove A(1),-- A(g) and B(% +1),---, B(k) for the next
iteration. Note that we have deleted % elements from A whose values are all less than the kth
smallest element we are search for; hence, we set &' = k — g and sefarch for the £’th smallest

element in the next iteration.

e Now, assume b < a. We can then remove A(% +1),---,A(k) and B(l),---,B(%) for the
next iteration. It is also noted that we have deleted g elements from B whose values are all
less than the kth smallest element we are search for; hence, we set &' = k — % and search for
the £’'th smallest element in the next iteration.

When £k is odd, it can be solved in a similar manner, and details can be found in the Practice

Problem set.

To analyze the time complexity, we note that the search space is reduced by a half after each
iteration; hence, the whole process can be done in O(log k) = O(log(max(m,n))) time.

22

4. (5 pts each)

(a) Apply the Partition algorithm to A = (4,4,8,1,3,8,10,3,4,3,3,1,4,2) using the first element
of A as the pivot element. Upon completion, all elements equal to the pivot element should
be placed in the left of the pivot element.

(Show all your work.)

23

(b) Apply the Select algorithm and find the kth smallest element of L where
L=141,3,2,25,24,7,8,9,6,15,13,15,11,22,11, 5,24, 22, 21,23,17,29, 16,22,18, 26,22, 13,29}
and k£ = 21.

(Show all your work.)

24

5. (10 pts.) The Quicksort algorithm outlined below runs in O(n?) time in the worst case where

the initial call is Quicksort(1,n).

Quicksort(m,p)
if m < p then

{

j<p+1
Partition(m, j) /* Upon completion of Partition, the pivot element is placed at index j. */

Quicksort(m,j — 1)
Quicksort(j + 1,p)

}

endQuicksort
Discuss how the worst-case time complexity can be improved to O(nlogn).

Sol. We can use the median as the pivot element for the Partition process to partition the
list into two equal size sublists. Finding the median can bd done in O(n) time using the
linear-time Select algorithm, and the number of iterations of Quicksort algorithm is bounded

by O(logn); hence, the Quicksort runs in O(nlogn) time in the worst-case.

25

6 (10 pts.) Consider the problem of Job sequencing with deadlines discussed in class (also,

presented in the textbook).

Assume that jobs are labeled with 1,---n such that p; > po > --- > p,, i.e., jobs are
given as a sorted list according to their profits. An optimal algorithm outlined below can be
implemented using the Union-Find data structure to run injO(nlogn) time in the worst case.

Procedure JS
J=10
for 1 =1 ton do
if all jobs in .J U {i} can be completed by their deadlines, then .J = .J U {i}
endfor
Return(.J)
endJS

Find an optimal solution by applying the JS algorithm to the following example:

n = 6: profits P = (10,9,8,7,4, 3) and deadlines D = (5,8,2,10,1,2).

You should show details of all steps that include how the Union-Find data structure can be

defined /applied to demonstrate O(nlogn) running time in the worst case.

26

n = 6: profits P = (10,9, 8,7,4, 3) and deadlines D = (5,8, 2, 10,1, 2).

27

7. (10 pts.) Let G be an edge-weighted graph with w(e) denoting the weight of edge e € E(G).
Now, consider a new weight function w’(e) such that w'(e) = w(e) + ¢ for each e € E(G),
where c is a positive constant.

Prove or disprove that if a path connecting two nodes, say s and t, is a shortest path using
the old weight function w, it is also a shortest path connecting s and ¢ when the new weight
function w’ is used.

Sol. See G in (a) where 1-2-3-4 is a shortest path from 1 to 4. By defining w’(e) = w(e) + 10
for each e € E(G) as shown in (b), a shortest path from 1 to 4 is 1-5-4, not 1-2-3-4.

1 11@11@11

28

8. (10 pts.) Consider the following variation of the fractional Knapsack problem:

We are given a set of n objects S = {1,---,n}, a knapsack with capacity M, a weight function
W = (wy,---,wy,), a profit function P = (p1,---,pn), a subset A C S, and a subset B C S.
The objective is to compute X = (x1,---,x,) such that

(i) 0 < x; < 1/2 for each i € A,

(ii) % < x; <1 for each i € B,

(ili) 0 < x; < 1 foreachie S— AU B,

(iv) 3oy ziw; < M, and

(v) >0 @;p; is maximized satisfying (i)-(iv).

If no feasible solution exists, you should report so.

Give an algorithm that solves the problem, i.e., that finds an optimal solution. You do not

need to prove the optimality of your algorithm.

29

(
(
(
(
(

i) 0 <x; <1/2 for each i € A,

i) 1

< z; <1 for each 7 € B,

iii) 0 <z; <1foreachi€e S— AUB,

iv)

v)

v xpw; < M, and

*_ T;p; is maximized satisfying (i)-(iv).

Sol. If) ;. g 5 > M, then report no feasible solution exists. Otherwise, do the following.

(i) Let M = M — Y ;cp . (We initially assign z; = % for each i € B.)
(ii) We sort items such that 5}—11 > e > g—:‘l and consider items in this order.
(iii) Add item 7 to the knapsack as much as we can such that

o 1; < % if item 7 € AU B, and

e 7; < 1 otherwise.

(For ¢ € B, we have already added 5 in the knapsack; so we can| add at most 5 more
in the knapsack.)

30

9. (5 pts.) Design a Huffman code for the following 7 letters ay,---,a7 such that a; appears p;%
of the times where p; = 40, po = 20, p3 =15, p4 =9, p5 = 6, pg = 5, and p7 = 5.

Sol. P,:1, P,:011, Py :010, Py : 0011, Ps : 0010, Ps : 0001, Ps : 0000.

T

Q,// ' P4

9 @

0/ 1

20
P2

O O
|E| 6]

P+ Pe Ps

ofo | & -
. g,JH F?

10. (5 pts. each) Consider graphs G; and G5 shown in Figure 3.

(a) Find a minimum spanning tree of Gy using the Prim’s algorithm. You should show details of

all steps to demonstrate O(n?) running time, where n is the number of vertices.

(b) Find a minimum spanning tree of GG using the Kruskal’s algorithm. You should show details
of all steps to demonstrate (|E|logn) running time where |E| denotes the number of edges
and n denotes the number of vertices. You may use the Union-Find data structure to obtain

the desired running time.

(c) Apply the Dijkstra’s shortest path algorithm to G5 and find shortest paths from node 1 to all
other node. You should show details of all steps to demonstrate O(n?) running time where n

is the number of vertices.

0@

A S
@ 45 5 @ »Cs} 3 @

(a) Gl (b) G2

32

