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Process-Structure-Quality Relationships of 3D Printed Tissue Engineering Scaffolds
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Motivation and Objective
Motivation: 35% of deaths in the United States alone could be prevented with a large enough supply of viable organs, and

Bio-AM may make that a reality. However, suboptimal printing parameters lead to defective prints, incapable of transplantation.

Objective: Create and implement a methodology to assess and optimize printability.
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Figure 4: (a) Viscosity of 70/30 PCL/HAp for a range of the printing temperatures. (b) Compression testing results and average compressive modulus.

Figure 2: In situ images from the worst performing compressive modulus sample from each
polycaprolactone/hydroxyapatite composition at the lowest and highest printing condition arrangements.

Figure 1: Average strand width versus linear print speed of polycaprolactone (PCL)/hydroxyapatite (HAp)
composition.
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Figure 3: 3D printing of polycaprolactone/hydroxyapatite (PCL/HAp) scaffolds and the in situ monitoring of the
geometrical outcome. (a) Schematic of PCL/HAp printing and microstructure of interspersed HAp particles in
the thermoplastic PCL. (b) Print setup of the bioplotter used in the study and the location of the camera for in
situ monitoring of the printing process. (c) Layer by layer images generated through in situ monitoring. (d) A
representative image of a 3D printed PCL/HAp scaffold with clinically relevant dimensions.

(d)

90/10 PCL/HAp scaffold

5 mm

b)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

A
ve

ra
ge

 S
tr

an
d

 W
id

th
 (

m
m

)

Linear Speed (mm/s)

80/20 PCL/HAp

120 C, 2.5 bar

130 C, 3.5 bar

140 C, 4.5 bar

Desired Strand Width

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Circle Square 30-60-90 Tri

A
ve

ra
ge

 C
ir

cu
la

ri
ty

80/20 Printing Condition versus Circularity
120C, 2.5 bar, 8 mm/s
120C, 2.5 bar, Desirable
130C, 3.5 bar, 8 mm/s
130C, 3.5 bar, Desirable
140C, 4.5 bar, 8 mm/s
140C, 4.5 bar, Desirable

*

*

*

Goal: 1.000

Goal: 0.785

Goal: 0.468

Figure 5: Printability analysis of polycaprolactone/hydroxyapatite (PCL/HAp) at several composition ratios. (a) Linear speed optimization strand width results for 80/20 PCL/HAp at
different printing temperature/pressure conditions. (b) Geometric quality of 80/20 PCL/HAp printed at various linear print speeds and printing temperature/pressure combinations.
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Figure 6: (a) SEM images of cultured samples, showing higher
cell attachment on the 80/20 and 70/30 PCL/HAp. (b)
Immunostaining images of osteodifferentiation of hMSCs for
bone markers (RUNX2 and collagen I as early and OPN and
BSP as late differentiation markers). (c) Confocal images of
xylenol orange staining for calcium deposition (post
differentiation).
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Goal: Enable flaw-free Bio-AM of tissues by understanding and quantifying the causal thermal and flow phenomena that lead

to defects.

Bone material (hydroxyapatite, HAp) was mixed with a thermoplastic polymer (polycaprolactone, PCL).

Suboptimal printing parameters and material composition lead to defective prints.

Bio-AM setup with in-situ imaging for the monitoring of tissue scaffolds.

Physical and biological properties are functions of temperature, pressure, velocity, composition, and shape.
(1) Bone tissue composite is shear thinning (need to balance between temperature and extrusion pressure).
(2) Adding bone material (HAp) increases viscosity. (3) Increasing bone material (HAp) improves bone growth.

A viable construct must have high fidelity at both the strand and geometry levels.
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Bone growth is governed by material composition and scaffold quality. 
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