
Process Model-Based Continuous Improvement of Election Process Quality and Robustness
Leon Osterweil1, George Avrunin1, Matt Bishop2, Lori Clarke1,

1: University of Massachusetts Amherst. 2: University of California Davis

Abstract Objective

This research was supported by National Science Foundation (NSF) under Awards CCF-0905530, CNS-1049738, CCF-0820198, and IIS-0705772.

Future Directions

Preliminary Results

References
 A Systematic Process-model-based Approach for Synthesizing Attacks and
Evaluating Them H. Phan, G. S. Avrunin, L. A. Clarke, L. J. Osterweil, M. Bishop, 2012
Electronic Voting Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE
'12), August 6-7, 2012
 https://www.usenix.org/system/files/conference/evtwote12/evtwote12-final26.pdf

 Modeling and Analyzing Faults to Improve Election Process Robustness
 B. I. Simidchieva, S. J. Engle, M. Clifford, A. C. Jones, S. Peisert, M. Bishop,

L. A. Clarke, L. J. Osterweil, 2010 Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections (EVT/WOTE '10), August 9-10, 2010, Washington, DC.
 Contact: Lee Osterweil: ljo@cs.umass.edu

Demonstrate how applying software analysis to rigorously-
defined models of processes can identify defects and
vulnerabilities and lead to improvements in those processes.
We use Model Checking to identify process defects and Fault
Tree Analysis to show how incorrect performance (by humans or
machines) creates opportunities for attacks. We also show how
both analysis techniques can be combined to provide automated
support for the synthesis of attacks and the subsequence
verification of the robustness of the processes to such attacks.

 A holistic approach for using rigorous analysis of precisely defined
processes to incrementally improve the quality and robustness of
a process.

•  Highly automated
•  Based on rigorously-defined process models
•  Applies formal analysis techniques
•  Supports continuous improvement of processes

The approach was applied to the Yolo and Marin County, California, election processes:
•  Modeled parts of the Yolo and Marin County election processes in Little-JIL
•  Applied Fault Tree Analysis to identify process vulnerabilities that allow an unqualified

voter to receive a regular ballot
•  Identified process paths whose execution could violate desired election properties
•  Modeled potential attack based on identified vulnerabilities
•  Analyzed process robustness in presence of an attack

  A deductive, top-down analysis to find out
which events in a system could lead to a
given hazard

  A fault tree is a graphical model of the
various combinations of events producing
the hazard

  A minimal cut set (MCS) is a minimal set
of primary events all of whose occurrence
ensures that the hazard event occurs. It
indicates a system vulnerability that an
adversary may be able to exploit to create
the hazard

 Hazard: event at the top

OR gate

AND gate

Intermediate event

Primary event

Top part of the Fault Tree derived from Yolo County election process

Vulnerability identification using automated Fault Tree Analysis

voterRegistered==tru
e-

voterName->>- ----->>-voterName-
voterRegistered->>-

>>-voterRegistered----

---voterQualified->>- --->>-voterQualified-

voterQualified->>-
--->>-voterQualified-

--->>-ballot-ballot->>-

ballot->>-

ballot->>- ballot->>-
--->>-voterQualified-

VoterUnqualifiedExcep>on-

voterQualified==fals
e-

--->>-voterQualified-

voterQualified==tru
e-

voterQualified==tru
e-

VoterNotRegisteredExcep>on-

>>-a-----

�!

�!
:-input-ar>fact-a-

:-sequen>al-step-

:-try-step-

b-
:-preBrequisite-b-

�-
a->>-----:-output-ar>fact-a-

E-
:-simple-handler-
--for-excep>on-E-

:-step-bar-

Model of part of Yolo County election process

 Well-defined
semantics
 Expressive
 Accessible

Process modeling using Little-JIL

Composed-Process-

synchronization

The election process model

The impostor attack plan

Process Model & Attack Plan Integration

 Increase level of automation in:
•  Attack plan construction from MCSs
•  Attack plan integration with process model

Robustness evaluation using
automated model checking

A formal verification technique that
  exhaustively explores all possible execution paths in a finite model of a

process,
  determines whether a particular property holds in the model,
  produces a counterexample if the property does not hold.

 Successful hazard defense is represented by the property: the attack
cannot complete successfully

 Improve derived fault trees
•  Increase completeness of the fault tree

derivation algorithm
•  Improve hazard specification

 Improve process models
•  Analyze more parts of election processes
•  Verify more election process properties
•  Ensure process models provide sufficient

details for formal analyses

