Proofs, Provers, Processes at Scale

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

Oct. 9, 2019



Ada Lovelace and Turing

£y}

The science of operations, as derived from
mathematics more especially, is a science of it-
self, and has its own abstract truth and value.

It is of course important that some efforts be made
to verify the correctness of assertions that are made
about a routine. There are essentially two types of
method available, the theoretical and the experimen-
tal. In the extreme form of the theoretical method
a watertight mathematical proof is provided for the
assertion. In the extreme form of the experimental
method, the routine is tried out on the machine with
a variety of initial conditions and is pronounced fit
if the assertions hold in each case.

Alan Turing (quoted by D. MacKenzie in Risk and
Reason)

Natarajan Shankar




Scale in Perspective

@ Formal methods span a spectrum of problems and solutions.
@ Scale can involve

Problem size

Cost

Performance
Productivity

Usability
Maintainability
Degree of automation
Degree of specialization
Expressiveness
Abstraction level

@ Background libraries

6000000000

Natarajan Shankar



Formal Methods in the Spectrum

@ Methods like static and dynamic program analysis
validate/falsify small properties of big systems through
aggressive over/under-approximation.

@ Model checking algorithmically verifies/falsifies limited
properties of models of systems and is quite effective for
bug-finding.

@ Automated synthesis techniques can target small programs or
small pieces of larger programs.

@ Program derivation can handle larger programs but requires
manual guidance (which is not a bad thing).

@ Program verification can require a significant annotation and
proof overhead.

Natarajan Shankar M e Panel



What is Achievable Now?

@ The sel4 project estimates that it takes about 3 to 4 weeks
per 1000 lines of proof.!

The project produced 10KLOC with about 200KLOP
(kilo-lines of proof) at 18 person-years.

Even though lines of proof is not a meaningful metric, this
seems like a good ROM estimate.

In terms of (equivalent) lines of C code, if one roughly
estimates that each line of code requires an average (with a
substantial variance) of 10 lines of proof (seL4 was 20),
verified code productivity can be around 7 KLOC/year.

For critical system code, productivity levels are around 4 to
7KLOC.

However, proof maintenance can be considerably harder than
code maintenance.

Productivity for Proof Engineering Mark Staples, Ross Jeffery, June
Andronick, Toby Murray, Gerwin Klein, Rafal Kolanski, ESEM’14

Natarajan Shankar



Looking Ahead: What Scales?

Natarajan Shankar



Looking Ahead: What Scales?

Abstraction scales

Natarajan Shankar



Looking Ahead: What Scales?

Abstraction scales

@ Engineers are used to working with abstractions in the form of
models.

@ Formal reasoning must also move up the value chain to
capture models.

@ These models can be easily supported by code generation to
multiple languages and platforms.

@ Proofs and counterexamples are easier to construct and
maintain since abstract models support proof patterns and
effective automation through decision procedures and model
checking.

e MATLAB Simulink/Stateflow is an example of the success of
model-based software engineering.

Natarajan Shankar



Looking Ahead

@ For a more scalable success story for model-based approaches,
we need systematic ways of mapping highly reusable
mathematical models to executable code/hardware in domains
such as

Grammars and parsers

Compilers

Cryptography

Cyber-physical systems

Signal processing

Machine learning

File systems, and
Cryptographic/Distributed protocols.

@ Within a decade, domain experts can be expected to create
tens of thousands of (equivalent) lines of code a year.

@ The bigger challenge is ridding computing of its original sins
so that formal claims can be supported with efficient
arguments whose cost can be amortized through reuse.

Natarajan Shankar



