
Proofs, Provers, Processes at Scale

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

Oct. 9, 2019



Ada Lovelace and Turing

The science of operations, as derived from
mathematics more especially, is a science of it-
self, and has its own abstract truth and value.

It is of course important that some efforts be made
to verify the correctness of assertions that are made
about a routine. There are essentially two types of
method available, the theoretical and the experimen-
tal. In the extreme form of the theoretical method
a watertight mathematical proof is provided for the
assertion. In the extreme form of the experimental
method, the routine is tried out on the machine with
a variety of initial conditions and is pronounced fit
if the assertions hold in each case.

Alan Turing (quoted by D. MacKenzie in Risk and

Reason)

Natarajan Shankar FM@Scale Panel 2/7



Scale in Perspective

Formal methods span a spectrum of problems and solutions.

Scale can involve
1 Problem size
2 Cost
3 Performance
4 Productivity
5 Usability
6 Maintainability
7 Degree of automation
8 Degree of specialization
9 Expressiveness
10 Abstraction level
11 Background libraries

Natarajan Shankar FM@Scale Panel 3/7



Formal Methods in the Spectrum

Methods like static and dynamic program analysis
validate/falsify small properties of big systems through
aggressive over/under-approximation.

Model checking algorithmically verifies/falsifies limited
properties of models of systems and is quite effective for
bug-finding.

Automated synthesis techniques can target small programs or
small pieces of larger programs.

Program derivation can handle larger programs but requires
manual guidance (which is not a bad thing).

Program verification can require a significant annotation and
proof overhead.

Natarajan Shankar FM@Scale Panel 4/7



What is Achievable Now?

The seL4 project estimates that it takes about 3 to 4 weeks
per 1000 lines of proof.1

The project produced 10KLOC with about 200KLOP
(kilo-lines of proof) at 18 person-years.

Even though lines of proof is not a meaningful metric, this
seems like a good ROM estimate.

In terms of (equivalent) lines of C code, if one roughly
estimates that each line of code requires an average (with a
substantial variance) of 10 lines of proof (seL4 was 20),
verified code productivity can be around 7 KLOC/year.

For critical system code, productivity levels are around 4 to
7KLOC.

However, proof maintenance can be considerably harder than
code maintenance.

1Productivity for Proof Engineering Mark Staples, Ross Jeffery, June
Andronick, Toby Murray, Gerwin Klein, Rafal Kolanski, ESEM’14

Natarajan Shankar FM@Scale Panel 5/7



Looking Ahead: What Scales?

Abstraction scales

Engineers are used to working with abstractions in the form of
models.

Formal reasoning must also move up the value chain to
capture models.

These models can be easily supported by code generation to
multiple languages and platforms.

Proofs and counterexamples are easier to construct and
maintain since abstract models support proof patterns and
effective automation through decision procedures and model
checking.

MATLAB Simulink/Stateflow is an example of the success of
model-based software engineering.

Natarajan Shankar FM@Scale Panel 6/7



Looking Ahead: What Scales?

Abstraction scales

Engineers are used to working with abstractions in the form of
models.

Formal reasoning must also move up the value chain to
capture models.

These models can be easily supported by code generation to
multiple languages and platforms.

Proofs and counterexamples are easier to construct and
maintain since abstract models support proof patterns and
effective automation through decision procedures and model
checking.

MATLAB Simulink/Stateflow is an example of the success of
model-based software engineering.

Natarajan Shankar FM@Scale Panel 6/7



Looking Ahead: What Scales?

Abstraction scales

Engineers are used to working with abstractions in the form of
models.

Formal reasoning must also move up the value chain to
capture models.

These models can be easily supported by code generation to
multiple languages and platforms.

Proofs and counterexamples are easier to construct and
maintain since abstract models support proof patterns and
effective automation through decision procedures and model
checking.

MATLAB Simulink/Stateflow is an example of the success of
model-based software engineering.

Natarajan Shankar FM@Scale Panel 6/7



Looking Ahead

For a more scalable success story for model-based approaches,
we need systematic ways of mapping highly reusable
mathematical models to executable code/hardware in domains
such as

Grammars and parsers
Compilers
Cryptography
Cyber-physical systems
Signal processing
Machine learning
File systems, and
Cryptographic/Distributed protocols.

Within a decade, domain experts can be expected to create
tens of thousands of (equivalent) lines of code a year.

The bigger challenge is ridding computing of its original sins
so that formal claims can be supported with efficient
arguments whose cost can be amortized through reuse.

Natarajan Shankar FM@Scale Panel 7/7


