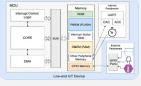


Protecting Personal Data

ProperData Flow on the Internet

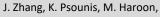
SaTC Frontiers: Collaborative: 1956393 ¹, 1955227 ², 2103439 ³, 1956435 ⁴ Institutions: UC Irvine ¹, Northeastern Univ. ², UC Davis ³, USC ⁴ Lead Pls: A. Markopoulou ¹, D. Choffnes ², Z. Shafig ³, K. Psounis ⁴ https://properdata.eng.uci.edu/, contact: properdata@uci.edu


Broadening Participation in Computing

- Research Exploration Workshops on Privacy & IoT, May 2021
- Participants: 60 URM undergrad students, from our institutions and community colleges.
- Organized by: ProperData faculty and graduate students, Google ExploreCSR.
- Activities: hands-on experience with raspberry Pi, intro to privacy research, panels, career mentoring, networking.

"VERSA: Privacy-from-Birth: Protecting Sensed Data from Malicious Sensors", I. D. O. Nunes, S. Hwang, S. Jakkamsetti, G. Tsudik, in IEEE S&P 2022

	Challenge	Prevent (privacy-sensitive) data leakage from even fully compromised low-end IoT devices.
	Solution, Scientific Impact	Ve rified R emote S ensing A uthorization (VERSA) is the first low-end IoT architecture to guarantee privacy-from-birth.


"A Comparative Study of Dark Patterns Across Mobile and Web Modalities," J. Gunawan, A. Pradeep, D. Choffnes, W. Hartzog, C. Wilson, in CSCW'21.

Challenges	Dark patterns (DPs) can be deployed on any interface type to manipulate user behavior. How do they impact users on different interfaces?	
Solution Approach	 Manual interaction analysis and annotation. We identify cross-modality inconsistencies within the same web service. 	
Scientific Impact	 We reveal cross-modality problems or blind spots overlooked by designers. Understand DPs for security/privacy: e.g., when first joining the service, configuring settings, and leaving the service. 	
Broader Impact	 Grad student presented in FTC Workshop on Dark Patterns. Response to inquiries from web services. Datasets & code available, can enable audits. 	

"HARPO: Learning to Subvert Online Behavioral Advertising",

Z. Shafiq, in NDSS 2022.

Challenges	Privacy-invasive tracking used for user profiling & ad targeting.
Approach	 Obfuscate user's browsing history, using a principled RL- based obfuscation approach. Develop surrogate ML (tracking) models to train RL agent w/o access to real ones.
Scientific Impact	Demonstrated HARPO's performance (2x privacy, less overhead vs. baselines), stealth, personalization, in real-world.
Broader Impact	Browser extension released. Talk on ethics of Harpo approach.

"OVRseen: Auditing Network Traffic and Privacy Policies in Oculus VR", R. Trimananda, H. Le, H. Cui, J. T. Ho, A. Shuba, A. Markopoulou, in USENIX SECURITY 2022.

Challenges	Automatically audit: data sharing practices and consistency of practices vs. the platform's and app's privacy policies.
Solution Approach	 On-device network traffic monitoring. Apply NLP to Privacy Policy analysis; customize for VR.
Scientific Impact	First large-scale study of VR Advertising & Tracking Ecosystem. Tools and Datasets available.
Broader Impact	Disclosure to Meta, app developers.Discussions with FTC on VR privacy.