

Georgia Tech ARPA-E: Energy Internet

Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-reliable Green Electricity Internetworks

IAB Meeting 01: February 13, 2012

- Project Concept
 - Goals:
 - □ Architecture
 - Interoperability
 - Grid scheduling

Emerging Grid

Georaia

Smart Grid Drivers

What is going on? Markets Energy Government Deregulation Retail Markets Involvement Renewables Regulators Choice Energy Efficiency Strategic Investment Empowerment Environmental Awareness Consumer Electricity Industry **Power Electronics** Information Systems Smart Metering Communications Aging Workforce Storage Core Computing Reduced Investment PHEV Algorithms Aging Infrastructure **Power Technology** Information **Infrastructure**

There are several megatrends affecting the electricity industry. Some are game changers, some are "revolutions" on their own

Evidence of Saturation

- 1. Too much data is needed for operation
- 2. Communication bottlenecks
- 3. Intractable control and optimization problems
- 4. Some problems can't be solved even with super-computers.
- 5. Events can occur due to limitations of controlling large-scale renewable energy.
- 6. Operators complain of too much information
- 7. EMS, DMS system complexity continues to grow
- 8. Operation manuals are thousands of pages long
- 9. Market guides are thousands of pages long
- 10. Centralized infrastructure can be a security target

Edison's Jumbo dynamo at Pearl Street Station

5

Smart Grid Components

What are we dealing with?

- Electricity infrastructure (the grid)
- Information systems including communications, cybersecurity, etc
- Energy sources
- The consumer
- Specialized controls
- Electricity markets
- Policy issues

Smart Grid has several interacting elements. Smart Grid solutions must be "aware" of these elements.

 Fringe components such as transportation, energy markets, and smart village components.

Desired Smart Grid Features

What do we want to achieve?

Smart Grid Features

- Self-Healing (self-healing)
- Consumer Empowering
- 21st Century Power Quality
- Tolerant of Attack
- Variety of Generation Options
- Maturing Electricity Markets
- Optimize Assets

Consumer Needs

Consumer's Electricity Needs

Consumer wants:

Quantity		
Cost		
Reliability		
Quality		
Efficiency		
Sustainability		
Ubiquity		
Differentiation		
Simplicity		

- Enough electricity to meet its needs.
 - To pay as little as possible
- Reliable service
- Frequency, voltage, power factor, balance, etc
- To use electricity in an efficient manner
- To contribute to address environmental problems
- Availability of power at various changing locationsOptions and choice
- To be hands-off

Georgia Tech

Project Key Concepts

Domain	Paradigm/Trend	Key Concept
Actors	Consumers can also produce and store	Prosumer
Autonomy	Consumers seek their own objectives, can be smart	Autonomous
Scope	 Devices and actors at all levels (interconnection, ISO, utility, μgrid, building, homes, appliances) can participate and "help out" 	Flatness
Sources	From fossil fuel to renewable	Green
Uncertainty	Distributed energy is highly variable -> Source following	Stochastic
Control	Need to control massive number of devicesInherit limits of centralized control	Distributed
Information	 Can control entire power infrastructure through software Increased digital control -> Cyber-physical systems Recognition of privacy and cyber-security issues 	Cyber-control
Security	Need of increased/customized reliability	Ultra-reliable

"Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-reliable Green Electricity Internetworks"

- In this project we will demonstrate a distributed control architecture for resilient, reliable, and cost-optimizing utility systems, capable of integrating large-scale renewable energy up to 40%.
- 1. Consolidate and demonstrate *the architecture* that will allow the electricity industry to operate with characteristics similar to the internet: Distributed, Flat, Layered, Scalable
- Develop and demonstrate in large-scale using realistic data, a distributed services cyber- infrastructure that supports prosumers interaction. This cyber-infrastructure can be understood as an "Electricity Grid Operating System".
- 3. Develop and demonstrate in large-scale, using realistic data, a stochastic *prosumer energy scheduler*

Prosumers

Geor

 A generic model that captures basic functions (produce, consume, store, etc.) can be applied to power systems at any scale.

Prosumer Needs

(Already discussed)

- Standard connection to the grid
- To be paid as much as possible
- Grid reliability
- Operational Goals and Framework
- Models, Data, and Real-Time Information
- Control System
- Analytics and Decision Making
- Economic Goals, Framework, and Standards
- Models, Rates, Costs, Offers and Bids
- Market System
- Analytics and Decision Making

Flat Industry

a)

Georgia

b)

Prosumer Interactions

Geora

Layered Control Architecture

Georgia Tech

OWNER/ OPERATOR

ROSUMER AGENT				
Market	MKT-USR Interface			
MKT Engine	MKT-SC Interface			
System Control	SC-MKT Interface			
SC	SC-COM Interface			
Communication	COMM-SC Interface	Communication		
СОММ	COMM-LCTRL Interface	Interface		
Local Control	LCTRL-COM Interface			
LCTRL	LCTRL-DEV Interface			
Power Device	DEV-LCTRL Interface	Power Device		
DEV		Interface		

Georgia Tech

Demonstration System

Smart Grid Creation Process

How are we going to do it?

