

SaTC: Core: Medium: Protecting Confidentiality and Integrity of Deep Neural Networks against Side-channel and Fault Attacks

Challenge:

- Security implication of DNN: IP confidentiality and integrity/availability
- Diverse models, platforms, and applications for DNNs
- Optimization of DNNs and transfer learning

Prevon Weighted link (weight is a parameter part of 0,) (weight is a part of 0,) (weight is a part of 0,) (weight is a pa

Overview of SpyNet

	Model Information	HW Implementation	SW Implementation	
Structure characteristics	# layers type of layer, activation	power SPA		
		memory access	µarchitecture (I\$, PMC)	
		power SPA, timing		
	connection/ layers			
Hyperparameters	# neurons in FC	power SPA	µarchitecture (I\$, PMC)	
	# of kernels in CONV	power SPA, memory access	I\$, D\$, PMC, constraints	
	size of kernel in CONV/POOL	memory access	I\$, D\$, PMC, constraints	
Parameters	weights in FC	power DPA, bus snoop	FP	
	kernel values in CONV	power DPA, bus snoop	timing μ architecture, FP	

Overview of DisruptNet

		HW implementation		SW implementation	
		Resource	Fault Type	Resource/Stage	Fault Type
Computation	datapath PE	output: stuck-at, random	instruction execution	skip,control/data flow	
Computation		control logic			control flow
	reuse	buffer	set/reset, random	DRAM	set/reset, random, flip (rowhammer)
Data	temporary	registers	set/reset, random (DVFS)	registers	set/reset, random (DVFS)

CNS1929300, Northeastern University, Yunsi Fei, Shelley Xue Lin, Thomas Wahl {y.fei,x.lin,t.wahl}@northeastern.edu

Scientific Impact:

٠

- Investigate a new attack surface of DNN inference
- Systematically protect confidentiality and integrity of DNNs
- Deepen understanding of inherent information leakage and fault tolerance of DNN models

Broader Impact:

- Facilitate wide adoption of DNN in security-critical applications
- Advance the state-of-theart DNN implementations, computer architecture, heterogeneous systems, hardware security, formal methods and verification
- Technology transfer with company partners through a new NSF IUCRC center

Solution:

•

- SpyNet: leverage different sidechannels for recovering DNN structure and parameters on diverse platforms
- DisruptNet: manipulate DNN operations via practical hardware and software fault injections
 - SecureNet: network obfuscation against side-channel attacks, detection of integrity violation of DNNs, and hardening techniques for fault resistance