Provable Security from Group Theory \& Applications

Diversifying Intractability Assumptions for Efficient Crypto

This project builds a foundation for provable crypto based on combinatorial group theory. Its core objectives are to identify distributional problems for non-commutative (possibly infinite) groups, establish evidence to their average-case hardness, and explore grouptheoretic cryptographic constructions with enhanced functionalities.

Two-Pronged Approach

Group-theoretic learning problems

Build on success of computational learning problems as source of intractability, e.g.,

- Learning Parity with Noise (LPN)
- Learning With Errors (LWE)

Generalize to non-commutative setting:
\checkmark Learning homomorphisms w/ noise in Burnside groups of exponent 3

Distributional problems for infinite groups

Carve out hard-on-average problems from unsolvable algorithmic questions in combinatorial groups (e.g. subgroup problem) Identify suitable probability distributions that:

- are efficiently sampleable over infinite groups
- yield hard instances of underlying fundamental group-theoretic problems

Background: Learning With Errors (LWE)

- Idea: Small random perturbations ("errors") make easy learning problems into hard ones
- E.g., solving linear systems is $\Theta\left(n^{3}\right)$, but add noise, and best solution [BKW11] is $2^{\Theta(n / \log n)}$:

LHN: Learning Homomorphisms w/ Noise

- Insight: At core, LWE is about hiding a linear function from \mathbb{Z}_{q}^{n} to \mathbb{Z}_{q} by adding errors
- Idea: generalize linear functions to group homomorphisms, and hide them via noise
- Learning Homomorphisms w/ Noise (LHN)
- Let G_{n} and P_{n} be groups, and $\varphi \stackrel{\mathscr{S}}{\leftarrow} \operatorname{hom}\left(G_{n}, P_{n}\right)$
- $\operatorname{hom}\left(G_{n}, P_{n}\right)$: All homomorphisms from G_{n} to P_{n}
- Let Ψ_{n} be a "noise" distribution over P_{n}
- Let $A_{\varphi, \Psi_{n}}$ be the distribution of "noisy samples"
- $(a, b) \stackrel{\stackrel{\&}{\leftarrow}}{\leftarrow} A_{\varphi, \Psi_{n}} \doteq a \stackrel{\&}{\leftarrow} G_{n}, e \stackrel{\&}{\leftarrow} \Psi_{n}, b \leftarrow \varphi(a) e$
\checkmark LHN assumption: $A_{\varphi, \Psi_{n}} \approx_{\text {PPT }} U\left(G_{n} \times P_{n}\right)$
- LWE as special case: $G_{n}=\mathbb{Z}_{q}^{n}, P_{n}=\mathbb{Z}_{q}$
$\checkmark B_{n}$-LHN assumption: $G_{n}=B_{n}, P_{n}=B_{r}(r \ll n)$ $\left.\cdot e \stackrel{\&}{\leftarrow} \Psi_{n} \doteq \sigma \stackrel{\&}{\leftarrow} \mathcal{S}_{r}, v_{i} \stackrel{\&}{\leftarrow} \mathbb{Z}_{3}(\forall i \in[r]), e \leftarrow \prod_{i=1} x_{\sigma(i)}^{v_{i}}\right)$

B_{n} : Burnside Groups of Exponent Three

- A finite non-commutative "generalization" of \mathbb{Z}_{3}^{n}
- "Most generic" group with n generators s.t.
- $w^{3}=1, \forall w \in B_{n}$ (exponent condition)

Normal form of B_{n} (with generators x_{1}, \ldots, x_{n}):

$$
\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i<j}\left[x_{i}, x_{j}\right]^{\beta_{i, j}} \prod_{i<j<k}\left[x_{i}, x_{j}, x_{k}\right]^{\gamma_{i, j, k}}
$$

where $\alpha_{i}, \beta_{i, j}, \gamma_{i, j, k} \in \mathbb{Z}_{3}$, $\left[x_{i}, x_{j}\right] \doteq x_{i}^{-1} x_{j}^{-1} x_{i} x_{j}$, and $\left[x_{i}, x_{j}, x_{k}\right] \doteq\left[\left[x_{i}, x_{j}\right], x_{k}\right]$ Order of $B_{n}: 3^{n+\binom{n}{2}+\binom{n}{3}}$
$\left|\operatorname{hom}\left(B_{n}, B_{r}\right)\right|=3^{n\left(r+\binom{(}{2}+\binom{r}{3}\right)}$

Average-Case Hardness of B_{n}-LHN

- Main result: B_{n}-LHN is random self-reducible
- Solving B_{n}-LHN when φ is random as hard as solving it when φ is arbitrary*
- Why does random self-reducibility matter?
- Common trait of "standard" assumptions
- Simplifies key generation and assessment of cryptanalytic resistance:
> Either no* hidden homomorphism is secure, or all choices are good
- Other hardness results (in progress / planned):
- Ruling out reductions to LWE with $q=3$
- Decision-to-search reduction (in progress)
- Cryptanalytic assessment (future work)
- Hardness under auxiliary info (future work)

