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Background: Learning With Errors (LWE)!
!

o  Idea: Small random perturbations (“errors”)    
make easy learning problems into hard ones!

o  E.g., solving linear systems is          , but add 
noise, and best solution [BKW11] is              : !

Provable Security from Group Theory & Applications 

Diversifying Intractability Assumptions for Efficient Crypto!



Two-Pronged Approach!
Group-theoretic learning problems!

!

o  Build on success of computational learning 
problems as source of intractability, e.g.,!

•  Learning Parity with Noise (LPN)!
•  Learning With Errors (LWE)!

o  Generalize to non-commutative setting:!
ü  Learning homomorphisms w/ noise 

in Burnside groups of exponent 3!
!

Distributional problems for infinite groups!
 !

o  Carve out hard-on-average problems from 
unsolvable algorithmic questions in 
combinatorial groups (e.g. subgroup problem)!

o  Identify suitable probability distributions that:!
•  are efficiently sampleable over infinite groups!
•  yield hard instances of underlying 

fundamental group-theoretic problems!

This project builds a foundation for provable crypto based on combinatorial group theory. 
Its core objectives are to identify distributional problems for non-commutative (possibly 
infinite) groups, establish evidence to their average-case hardness, and explore group-
theoretic cryptographic constructions with enhanced functionalities.!

LHN: Learning Homomorphisms w/ Noise!
!

o  Insight: At core, LWE is about hiding a linear 
function from      to      by adding errors!

o  Idea: generalize linear functions to group 
homomorphisms, and hide them via noise!

•  Learning Homomorphisms w/ Noise (LHN)!
o  Let      and      be groups, and !

•                 : All homomorphisms from     to!
o  Let       be a “noise” distribution over     !
o  Let         be the distribution of “noisy samples”!

•   !
ü  LHN assumption: !

•  LWE as special case: !
ü     -LHN assumption:!

•   !

Average-Case Hardness of     -LHN!
!

o  Main result:     -LHN is random self-reducible!
•  Solving     -LHN when    is random as hard 

as solving it when    is arbitrary*!
o  Why does random self-reducibility matter?!

•  Common trait of “standard” assumptions!
•  Simplifies key generation and assessment 

of cryptanalytic resistance:!
Ø  Either no* hidden homomorphism is 

secure, or all choices are good!
o  Other hardness results (in progress / planned):!

•  Ruling out reductions to LWE with !
•  Decision-to-search reduction (in progress)!
•  Cryptanalytic assessment (future work)!
•  Hardness under auxiliary info (future work) !
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     : Burnside Groups of Exponent Three!
!

o  A finite non-commutative “generalization” of !
o  “Most generic” group with     generators s.t.!

•                       (exponent condition)!
o  Normal form of      (with generators               ):!

      where                          ,!
                                   , 

and!
o  Order of     : !
o   !
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