Provable Security from Group Theory & Applications

CNS-111767

Antonio R. Nicolosi Stevens Institute of Technology N. Fazio, W.E. Skeith, G. Baumslag, V. Shpilrain City College of CUNY

Diversifying Intractability Assumptions for Efficient Crypto

This project builds a foundation for provable crypto based on combinatorial group theory. Its core objectives are to identify distributional problems for non-commutative (possibly infinite) groups, establish evidence to their average-case hardness, and explore group-theoretic cryptographic constructions with enhanced functionalities.

Two-Pronged Approach

Group-theoretic learning problems

- Build on success of computational learning problems as source of intractability, e.g.,
 - Learning Parity with Noise (LPN)
 - Learning With Errors (LWE)
- Generalize to non-commutative setting:
 - ✓ Learning homomorphisms w/ noise in Burnside groups of exponent 3

Distributional problems for infinite groups

- Carve out hard-on-average problems from unsolvable algorithmic questions in combinatorial groups (e.g. *subgroup* problem)
- o Identify suitable probability distributions that:
 - are efficiently sampleable over infinite groups
 - yield hard instances of underlying fundamental group-theoretic problems

Background: Learning With Errors (LWE)

- Idea: Small random perturbations ("errors")
 make easy learning problems into hard ones
- ο E.g., solving linear systems is $\Theta(n^3)$, but add noise, and best solution [BKW11] is $2^{\Theta(n/\log n)}$:

Given
$$\mathbf{A} = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \in \mathbb{Z}_q^{m \times n} \quad \mathbf{b} = \mathbf{A} \cdot \mathbf{x} + \begin{pmatrix} e_1 \\ \vdots \\ e_m \end{pmatrix}, e_i \sim \Psi_{c\sqrt{n}}$$

Find
$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{Z}_q^n \qquad \Psi_{c\sqrt{n}} :_{\frac{\lambda}{2}}$$

B_n : Burnside Groups of Exponent Three

- \circ A finite non-commutative "generalization" of \mathbb{Z}_3^n
- \circ "Most generic" group with n generators s.t.
 - $w^3 = 1, \forall w \in B_n$ (exponent condition)
- O Normal form of B_n (with generators x_1, \ldots, x_n):

$$\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prod_{i < j} [x_{i}, x_{j}]^{\beta_{i,j}} \prod_{i < j < k} [x_{i}, x_{j}, x_{k}]^{\gamma_{i,j,k}}$$

where $\alpha_i, \beta_{i,j}, \gamma_{i,j,k} \in \mathbb{Z}_3$, $[x_i, x_j] \doteq x_i^{-1} x_j^{-1} x_i x_j$,

 $[x_i, x_j] = x_i \ x_j \ x_i x_j,$ and $[x_i, x_j, x_k] \doteq [[x_i, x_j], x_k]$

Order of $B_n: 3^{n+\binom{n}{2}+\binom{n}{3}}$ $|hom(B_n, B_r)| = 3^{n(r+\binom{r}{2}+\binom{r}{3})}$

LHN: Learning Homomorphisms w/ Noise

- o Insight: At core, LWE is about hiding a linear function from \mathbb{Z}_q^n to \mathbb{Z}_q by adding errors
- Idea: generalize linear functions to group homomorphisms, and hide them via noise
 - Learning Homomorphisms w/ Noise (LHN)
- o Let G_n and P_n be groups, and $\varphi \stackrel{\$}{\leftarrow} hom(G_n, P_n)$
 - $hom(G_n, P_n)$: All homomorphisms from G_n to P_n
- \circ Let Ψ_n be a "noise" distribution over P_n
- \circ Let A_{φ,Ψ_n} be the distribution of "noisy samples"
 - $(a,b) \stackrel{\$}{\leftarrow} A_{\varphi,\Psi_n} \doteq a \stackrel{\$}{\leftarrow} G_n, e \stackrel{\$}{\leftarrow} \Psi_n, b \leftarrow \varphi(a)e$
- ✓ LHN assumption: $A_{\varphi,\Psi_n} \approx_{\mathsf{PPT}} U(G_n \times P_n)$
 - LWE as special case: $G_n = \mathbb{Z}_q^n, P_n = \mathbb{Z}_q$
- ✓ B_n -LHN assumption: $G_n = B_n, P_n = B_r(r \ll n)$
 - $e \stackrel{\$}{\leftarrow} \Psi_n \doteq \sigma \stackrel{\$}{\leftarrow} \mathcal{S}_r, v_i \stackrel{\$}{\leftarrow} \mathbb{Z}_3 \ (\forall i \in [r]), e \leftarrow \prod_{i=1}^r x_{\sigma(i)}^{v_i}$

Average-Case Hardness of B_n -LHN

- O Main result: B_n -LHN is random self-reducible
 - Solving B_n -LHN when φ is random as hard as solving it when φ is arbitrary*
- Why does random self-reducibility matter?
 - Common trait of "standard" assumptions
 - Simplifies key generation and assessment of cryptanalytic resistance:
 - Either no* hidden homomorphism is secure, or all choices are good
- Other hardness results (in progress / planned):
 - Ruling out reductions to LWE with q = 3
 - Decision-to-search reduction (in progress)
 - Cryptanalytic assessment (future work)
 - Hardness under auxiliary info (future work)

Interested in meeting the PIs? Attach post-it note below!

