
NSF Secure and Trustworthy Cyberspace Inaugural Principal Investigator Meeting
Nov. 27 -29th 2012

National Harbor, MD

Interested in meeting the PIs? Attach post-it note below!

Carnegie Mellon

27	

Prototype implementation
Renderer Process – cnn.com

Webkit

Bind

V8

DOM

Browser Process

Ext.
func.

Browser
State Tab

Font settings,
ext. settings,

bookmarks, …

History, storage, cookies, …

Persistent State

IPC

Render View

IPC

Render Process Host

User

Renderer Process – ext. core

URL
requester

Network

Webkit

Bind

V8

core
DOM

IPC

Render View

Figure 4: An abstract view of the parts of Chromium’s archi-
tecture relevant for implementing our enforcement mechanism.

enforcement mechanism may not prevent attacks where the attacker
has more knowledge than just traces; e.g., behavior of the sched-
uler, timing channels. Stronger notions of noninterference exist to
capture some such behaviors. For instance, by using bi-simulation
as the notion of behavioral equivalence, reasoning about nonin-
terference will encompass certain timing-based attacks. Such an
adversary model allows the adversary to distinguish between two
states that are reached from the same initial state through two differ-
ent execution paths, even when those paths have equivalent traces.
Several browser features, mainly synchronous calls and floating la-
bels, prevent us from achieving this stronger notion of noninter-
ference. Similarly, when an attacker can measure other system
state (e.g., power consumption), even stronger notions of nonin-
terference are needed. However, the majority and most damaging
web attacks are not that sophisticated, and our proposed mechanism
(provably) can defend against them.

5. IMPLEMENTATION
To gain practical experience with mapping browser policies to

our framework, we instantiated the framework in a proof-of-concept
prototype built on Chromium version 32.0.1660.0 (initial import
was from Google rev. r197479). In this section we briefly overview
Chromium’s architecture, discuss some implementation challenges,
and give examples of browser flows that we instrumented.

5.1 Chromium Architecture Overview
A high-level overview Chromium’s architecture as it pertains to

implementing our framework is shown in Figure 5. The Chromium
browser is comprised of two main parts: the main browser pro-
cess and the renderer processes. Each renderer, which could be
servicing a web page or an extension core, is isolated in a separate
process. The main browser process handles the UI and manages the
renderers. The renderers use the WebKit open-source layout engine
to interpret the HTML.4 The browser process communicates with

4Newer versions of Chromium instead use the Blink rendering en-

the renderer processes via inter-process communication (IPC). The
browser maintains a RenderProcessHost object for each renderer
process. The renderer has one or more RenderView objects, each
of which represents the contents of a tab or pop-up window. The
RenderProcessHost in the browser maintains a RenderViewHost
(inside RenderProcessHost) corresponding to each view in the ren-
derer and handles the input and painting. The RenderView objects
communicate with the WebKit engine and the RenderViewHost to
display web pages and handle user input. Content scripts and page
scripts are scheduled for execution by WebKit and interpreted by
the V8 JavaScript engine; a binding layer consisting of automati-
cally generated code joins the two.

To display a web page and run extensions, the above components
interact in the following ways. First, extensions are loaded from
disk and each extension is given a rendering process in which to
run. Next, the user opens a tab and inputs a URL. The browser pro-
cess handles the input and creates a renderer process to load and
render the specified page. The RenderViewHost in the renderer
uses WebKit to interpret the HTML and communicates to the Ren-
derViewHost in the browser process to cause it to paint the page
on the screen. Finally, injecting extension content scripts into the
page involves the ScriptController in the Binding scheduling and
causing V8 to execute the scripts.

5.2 Implementation Overview and Challenges
Consistently with the discussion of enforcement in Section 3.3,

implementing our framework requires modifying Chromium to sup-
port: (1) adding labels to extensions, scripts, events, and other
browser data structures that correspond to entities of interest; (2)
adding label checks to guard access to sensitive APIs, communica-
tion between scripts or extensions, etc.; and (3) propagating enough
information about labels through the browser to enable these checks.

The main data structures that we modify, and the browser com-
ponents that we needed to modify in order to assign labels to the
entities represented in the data structures are shown in Figure 3.3
and detailed in the Appendix in Table 1.

Tracking information flow across processes Chrome is a multi-
threaded, event-driven application. A key challenge was to analyze
the control flows within. The call stack of an action, such as a
resource request, will originate from an IPC call or from within
the V8 engine, and a traditional backtrace would end at that point.
To obtain an end-to-end trace of control flow, from mouse click
to outgoing network activity, required multiple backtraces. If the
IPC message was specific to the action under analysis, the process
became easier by indicating the origin of an IPC within the code.
Similarly, a significant implementation challenge was locating the
places where labels needed to be checked, which spanned the mod-
ules and processes that comprise Chromium. E.g., Chromium’s
APIs are executed in the browser process but are accessed by ex-
tensions running in a renderer process. Hence, labels that would
naturally be attached to data structures that live only within spe-
cific processes or components need to be marshalled across process
boundaries. To achieve this, Chromium’s IPC layer was modified
to carry labels between processes.

JavaScript calls The V8 JavaScript engine controls its own inter-
nal control flow, and does not follow calling conventions such as
cdecl, which would support traversal with a debugger. Therefore,
the V8 subsystem is a black box to our analysis, and we only regain
control once control transfers to the binding layer between WebKit
and V8. Fortunately, we had the ability to attach the label to the
script execution context, and we are able to then check against it

gine, which is an offshoot of WebKit.

Provably Enforcing Practical Multi-Layer Policies
in Today’s Extensible Software Platforms

Securing extensible platforms

Limin Jia and Lujo Bauer Carnegie Mellon University

Focus on browser platform (Chromium)
•  Extensible via browser extensions
•  Includes static and dynamic entities

(illustrated on the right)

Approach
Information flow policies
•  Protection secrecy of users’ data and

integrity of data that flows into key
APIs

•  Well studied in their compositional
properties

Interfacing enforcement mechanisms
•  Runtime enforcement is practical for

retrofitting existing systems
•  Static enforcement avoids runtime

overhead
•  Utilize natural boundaries between

components for interfacing

•  What types of policies can be
efficiently enforced?

•  How to compose/interface different
enforcement mechanisms used for
individual components?

Modern software platforms such as Android OS and browsers are composed of a
collection of components. These platforms can be further extended by additional third-
party components. The goal of this project is to investigate how to enforce security policies
on such platforms, taking into consideration the heterogeneity of the components.

Coarse-grained tracking in Chromium

Using the infrastructure to inform user

•  Track from where scripts are loaded
•  Track where each visual component is from
•  Inform the user of the provenance via browser

GUI modifications

Carnegie Mellon

15	

tab
main page

DOM
tree

iframed
page

event

event

image
form field
……

extension
core

cookies
bookmarks

history
 3rd-party
 scripts

same-origin
 scripts

extension
content scripts
 API

Our approach

Dynamic entities Static entities

Secure multi-shared-state

eventHandler1 (H)

eventHandler2 (L)

H

L

H

L

DOM (H)

DOM (L)

