Quality of Time Architecture & APIs

Award # CNS-1329755 (UCLA), CNS-1329644 (CMU), CNS-1329644 (UCSD), and CNS-1329650 (UCSB) Type: Frontier; Start Date: June 2014

Fatima Anwar (UCLA), Adwait Dongare (CMU)

Co-Authors: Andrew Symington (UCLA), Mani Srivastava (UCLA), Sandeep D'souza (CMU), Anthony Rowe (CMU)

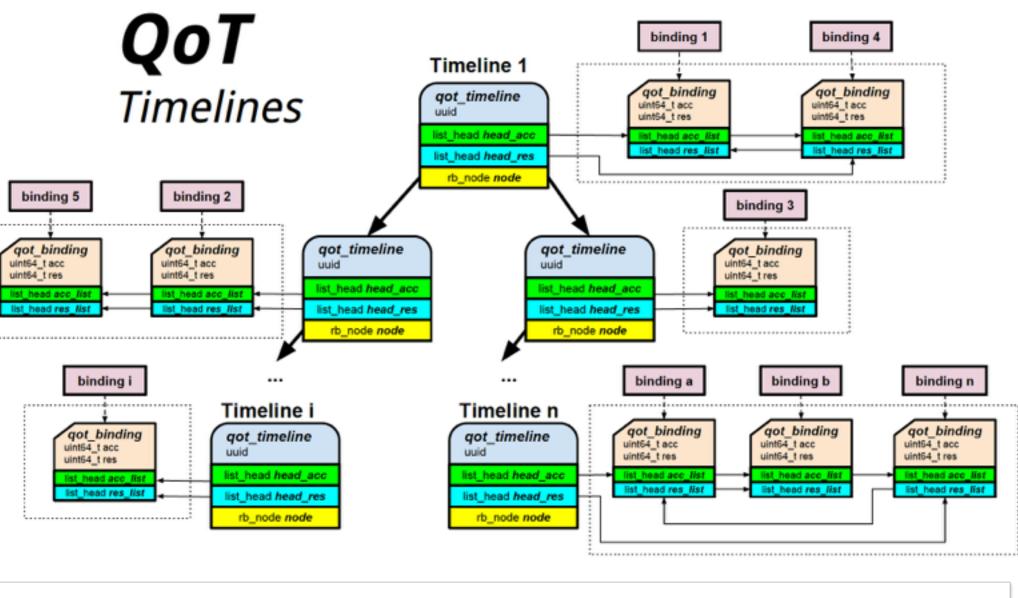
Motivation

QoT Virtual Clock

+ What is Quality of Time (QoT)?

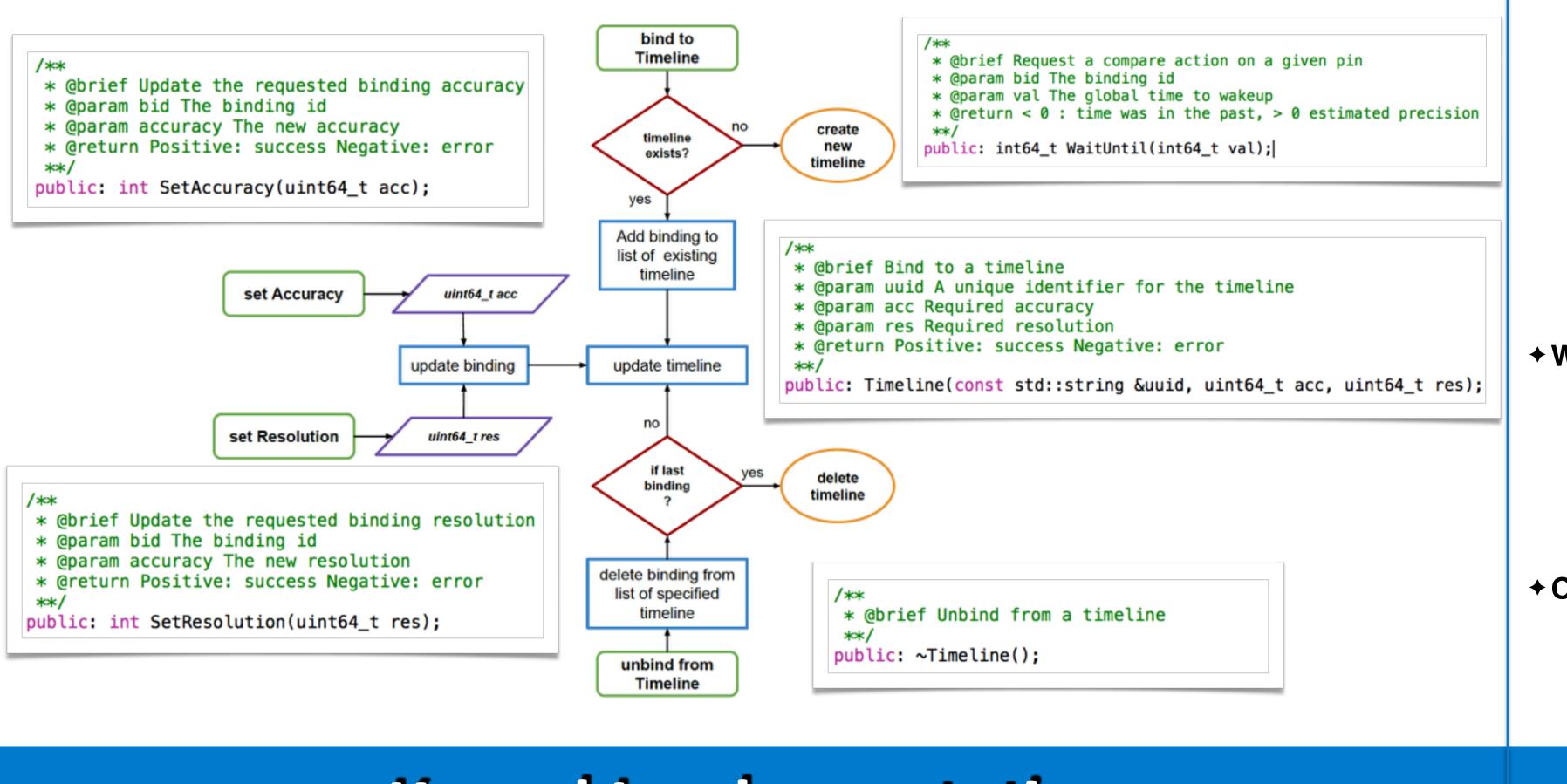
- Time is not necessarily what a clock reports. There is an uncertainty in time which is often not reported
- Quantifying this timing uncertainty with clock parameters such as accuracy, precision, jitter or wander, is what introduces quality in time

+ Why is Quality of Time important?


- Linux exposes few clocks e.g, CLOCK_REALTIME, CLOCK_MONOTONIC etc.
- These clocks are time synchronized / syntonized on best-effort basis through NTP or PTP. Thus the accuracy of these clocks is limited by underlying hardware such as, oscillators and counters
- Applications with varying demands should be able to declare their own clocks, bound to certain time bases with the desired accuracy and resolution

+ How to control Quality of Time?

- Produce a drift model for a local clock and map it to a declared timeline with associated quality
- Keep track of all bindings to timelines for performance optimizations


- **Timeline:** Virtual reference time base with respect to an epoch,
 - Uniquely identified by a universal identifier (**UUID**)
 - Represented by a *red black tree* in kernel module
 - Search, insertion, deletion in *O(log(n))*
- +Binding: The *accuracy* and *resolution* to which a clock binds to a timeline,
 - Represented by a *linked list* associated to a single node of red black tree
 - Uniquely identified by a binding id making search, insertion and deletion of a binding in **O(1)**
- **+ Posix clock:** Timelines are exposed to the user-space in the form of posix clocks

<pre>// Clock operations</pre>	to be registred with	the posix clock
	_clock_operations got_	
.owner	= THIS_MODULE,	
.clock_adjtime	<pre>= qot_clock_adjtime,</pre>	<pre>// Adjust clock both in time and frequency</pre>
.clock_gettime	<pre>= qot_clock_gettime,</pre>	<pre>// Get current time of the clock with least uncertainty</pre>
.clock_getres	<pre>= qot_clock_getres,</pre>	<pre>// Get resolution of the clock</pre>
.clock_settime	<pre>= qot_clock_settime,</pre>	<pre>// Set an absolute time for the clock</pre>
.ioctl	<pre>= qot_clock_ioctl,</pre>	// Read and write the clock metrics from and to user-space
.open	<pre>= qot_clock_open,</pre>	<pre>// Open a handle for clock to do clock operations</pre>
.release	<pre>= qot_clock_close,</pre>	<pre>// Release the clock handle</pre>
<pre>};</pre>		

timing sensitive task Vanilla Linux task coalescing task coalescing QoT Aware task scheduling considering timing inaccuracies

+ Why QoT awareness in scheduling?

• Synchronous scheduling of tasks at context-swap level

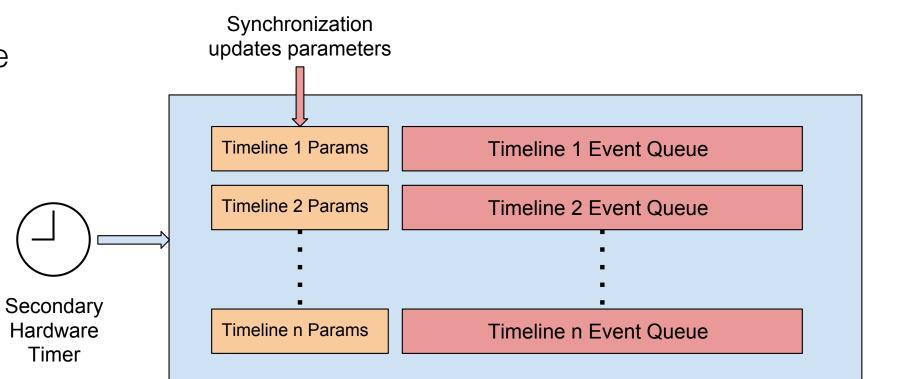
• Task scheduling more frequent than synchronization, causes inherent timing issues

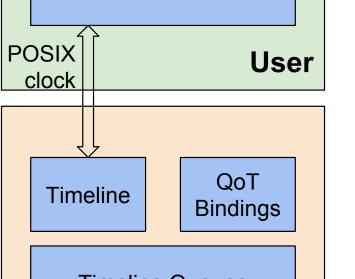
• Identify candidates for *task coalescing* with rate-harmonized scheduling to improve energy efficiency

+ Objectives

- **Distributed wait_until** functionality with real-time sleep & wake-up
- Temporarily maintain *synchronization on disconnection* from network

Kernel Implementation


+ Resource Kernel: Provides *real-time guarantees* for RT tasks without affecting regular linux tasks


• Tasks can request guaranteed *reservations* on processors at particular time

User API	

Introducing QoT functionality into linux through,

- **+ Timeline Queue:** Outstanding events on timeline are added to timeline queue
 - Implemented as *red black tree* on per timeline basis
 - Outstanding events checked on *timer expiry* as well as on *changes to timeline* (sync, adjustment, reference update)
 - *Warnings* to tasks with missed reservations due to changing notion of time.
- + Hardware Timer: Timeline Queues on independent hardware timer
- Minimize interference with Linux high-resolution & system timers
- Can be referenced from *external oscillator*

Timeline Queues Timer Kernel

Hardware

API

Timers

- **+ User API:** Simple interface to interact with timelines
 - **Timelines:** Shared data structure that keeps notion of time w.r.t. compatible clocks
 - **+ Bindings:** Links application timing requirements with available timelines
 - **+ Timeline Queues:** Queue of outstanding events with checks at every time correction.
 - **+ Timers:** Interaction with hardware & peripheral timers with existing drivers and timer API

