
✦What is Quality of Time (QoT)?

• Time is not necessarily what a clock reports. There is an uncertainty in time which is often not reported

• Quantifying this timing uncertainty with clock parameters such as accuracy, precision, jitter or wander, is what
introduces quality in time

✦Why is Quality of Time important?

• Linux exposes few clocks e.g, CLOCK_REALTIME, CLOCK_MONOTONIC etc.

• These clocks are time synchronized / syntonized on best-effort basis through NTP or PTP. Thus the accuracy of
these clocks is limited by underlying hardware such as, oscillators and counters

Quality	 of	 Time	 Architecture	 &	 APIs

Fatima	 Anwar	 (UCLA),	 Adwait	 Dongare	 (CMU)
Co-‐Authors:	 Andrew	 Symington	 (UCLA),	 Mani	 Srivastava	 (UCLA),	 	

Sandeep	 D’souza	 (CMU),	 Anthony	 Rowe	 (CMU)

Award	 #	 CNS-‐1329755	 (UCLA),	 CNS-‐1329644	 (CMU),  
CNS-‐1329644	 (UCSD),	 and	 CNS-‐1329650	 (UCSB)	

Type:	 Frontier;	 Start	 Date:	 June	 2014

Motivation QoT	 Virtual	 Clock

User	 APIs

Kernel	 Implementation Conclusion

✦Timeline: Virtual reference time base
with respect to an epoch,

• Uniquely identified by a universal
identifier (UUID)

• Represented by a red black tree in
kernel module

• Search, insertion, deletion in O(log(n))

✦Binding: The accuracy and resolution
to which a clock binds to a timeline,

• Represented by a linked list
associated to a single node of red
black tree

• Uniquely identified by a binding id
making search, insertion and deletion
of a binding in O(1)

✦Posix clock: Timelines are exposed to
the user-space in the form of posix clocks

QoT-‐Aware	 Scheduler

• Applications with varying demands should be able to declare their
own clocks, bound to certain time bases with the desired accuracy
and resolution

✦How to control Quality of Time?

• Produce a drift model for a local clock and map it to a declared
timeline with associated quality

• Keep track of all bindings to timelines for performance
optimizations

✦Why QoT awareness in scheduling?

• Synchronous scheduling of tasks at context-swap level

• Task scheduling more frequent than synchronization, causes inherent timing issues

• Identify candidates for task coalescing with rate-harmonized scheduling to improve energy efficiency

✦Objectives

• Distributed wait_until functionality with real-time sleep & wake-up

• Temporarily maintain synchronization on disconnection from network

Timeline 1 Event Queue

Timeline 2 Event Queue

Timeline n Event Queue
Secondary
Hardware

Timer

Timeline 1 Params

Timeline 2 Params

Timeline n Params

Synchronization
updates parameters

✦Resource Kernel: Provides real-time guarantees for RT tasks without affecting regular linux tasks

• Tasks can request guaranteed reservations on processors at particular time

✦Timeline Queue: Outstanding events on timeline are added to timeline queue

• Implemented as red black tree on per timeline basis

• Outstanding events checked on timer expiry as well as on changes to timeline (sync, adjustment,
reference update)

• Warnings to tasks with missed reservations due
to changing notion of time.

✦Hardware Timer: Timeline Queues on
independent hardware timer

• Minimize interference with Linux high-resolution
& system timers

• Can be referenced from external oscillator

User

Kernel

Hardware

User API

Timers

Timeline Queues

Timeline QoT
Bindings

POSIX
clock

Timer
API

Introducing QoT functionality into linux through,

✦User API: Simple interface to interact with timelines

✦Timelines: Shared data structure that keeps notion of time w.r.t. compatible

clocks

✦Bindings: Links application timing requirements with available timelines

✦Timeline Queues: Queue of outstanding events with checks at every time

correction.

✦Timers: Interaction with hardware & peripheral timers with existing drivers

and timer API

A

A

t

“t”

task coalescing task coalescing

task scheduling
considering timing

inaccuracies

timing sensitive task

QoT
Aware

Vanilla
Linux

