Quantifying Information Leakage in Searchable Encryption

PI Geoffrey Smith, Florida International University Presented by Mireya Jurado

EAGER: Collaborative: CNS-1749014 (with PI Alexandra Boldyreva, Georgia Tech, CNS-1749069)

Challenge

- Goal: store sensitive data in the cloud
- Approach: encrypted databases balance security and functionality

Key question: How much sensitive information is leaked?

Approach: Quantitative Information Flow

- Secret X has value known to the adversary only as a prior probability distribution π
- **Channel** C probabilistically maps secret input X to observable output Y
- C maps prior π to a **hyper-distribution** [$\pi \triangleright C$], which is a **distribution on posterior distributions**

π	С	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	
1/4	<i>x</i> ₁	¹ / ₂	¹ / ₂	0	0	_
¹ / ₂	<i>x</i> ₂	0	$^{1}/_{4}$	¹ / ₂	¹ / ₄	
¹ / ₄	<i>x</i> ₃	¹ / ₂	¹ / ₃	¹ / ₆	0	

		[π⊳C]	1/4	1/3	⁷ / ₂₄	1/8
		<i>x</i> ₁	¹ / ₂	3/8	0	0
3	\square	<i>x</i> ₂	0	³ / ₈	⁶ / ₇	1
		<i>x</i> ₃	¹ / ₂	¹ / ₄	¹ / ₇	0

- **Prior** and **posterior vulnerability**: the threat to the secret before and after the channel is run
- **Leakage:** the difference between posterior & prior vulnerability

Deterministic Encryption Analysis

- Cryptography assumes a **computationally-bounded** adversary, while QIF is **information theoretic**.
- But QIF can analyze the cryptographic ideal object. (E.g. a block cipher is modeled as a random permutation.) _____

Bayes Scenario: Guess the entire secret column in one try

Single Index Scenarios: (1) Free to guess any patient's disease and (2) forced to guess a specified patient's disease

Future Directions

- Refinement order among Order-Revealing **Encryption schemes**
- **Cross-column correlation**
- Mitigation by inserting fake data to functionally alter the prior

Publications and Talks

[1] Quantifying Information Leakage of Deterministic Encryption, Mireya Jurado and Geoffrey Smith, in Proc. CCSW'19:2019 Cloud Computing Security Workshop, London, UK, November 2019

[2] Quantifying Information Leakage of Deterministic Encryption (lightning talk), Mireya Jurado and Geoffrey Smith, in Encrypted Search Workshop, Providence, RI, June 2019

Broader Impact

- Scientific Impact
 - Coupled the provable-security approach of modern cryptography with QIF theory to yield a novel security framework
 - Analyzed encrypted search schemes

Societal Impact

• Helped practitioners and researchers better understand security risks

Impact on Education and Outreach _

- Florida International University is a leading Minority Institution.
- Funded a Hispanic woman PhD student

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting) October 28-29, 2019 | Alexandria, Virginia