Quantitative Information Flow Measurement

PI: Stephen McCamant, University of Minnesota http://www.cs.umn.edu/~mccamant/flowcheck/

RAs: Seonmo Kim, Navid Emamdoost

Combining capacity analysis and model counting

The objective of this project is to develop tools that can precisely measure the information revealed by computations on sensitive inputs.

- The presence of secret information in program output may not be directly visible
- Isolation (e.g., enclaves) or cryptographic protection still must reveal a computation's result

For a discrete, noiseless process like a

program execution, the *channel capacity* is equal to the base-2 logarithm of the number of distinguishable outputs.

This is a useful definition to build on for security analysis because it does not require an assumption about a probability distribution.

Approach

Capacity analysis

• Build dynamic bit-capacity data flow graph with static annotations for implicit flows

 Compute maximum flow and minimum cut between secret inputs and outputs

Model Counting

 Model count is the number of satisfying assignments to a formula

• Exact computation is #P-hard, so approximate by using random hashing to reduce the number of solutions

Capacity analysis tool: Flowcheck

Dynamic data-flow analysis extends Valgrind Memcheck's bit-level undefined value tracking

Model counting tool: SeachMC

Uses a statistical model to

Enclosure region annotations provide a static bound on the locations modified in implicit flows

New version compatible with recent Linux distributions

http://www.cs.umn.edu/~mccamant/flowcheck/

Integration with FuzzBALL

- Minimum cut and memory/register taint identify a region for more detailed analysis
- Binary control-flow analysis (DynInst) determines a single-exit region
- Binary symbolic execution with FuzzBALL converts each execution path into an SMT formula for model counting

https://github.com/bitblaze-fuzzball/fuzzball

Interested in meeting the PI? Attach post-it note below!

National Science Foundation WHERE DISCOVERIES BEGIN

The 3rd NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting January 9-11, 2017 Arlington, Virginia

