Quantitative Information Flow Measurement

Project full title: TWC: Small: Confidentiality Measurement of Complex Computations using Quantitative Information Flow

Challenge:

• Overall goal: measure how much sensitive information is present in the output of a computation

• *Precision*: avoid over- or underestimation, for accurate security/privacy decisions

• *Scalability*: efficiently get results from large and complex software, for widest applicability

Solution:

• Statistical adaptive algorithms: query-efficient control for model counting

• Hybrid with capacity-based bounds: use faster analysis to focus use of more expensive model counting

> Award no. 1526319 PI: Stephen McCamant

Maximum flow through data-flow graph bounds the information a computation reveals

Bottleneck determines maximum flow and is the best target for more detailed analysis University of Minnesota Driven to Discover™

Scientific Impact:

• Faster #SAT model counting and first bit-vector + floating-point model counting

• Most scalable quantitative information-flow measurement for binary executables

Broader Impact:

• Provide an independent assessment of purported privacy protections

• Feeding back tool fixes and improvements to open-source tool developers