Vision: Develop techniques & foundations to aerially launch, and later aerially recover unmanned systems that profile Earth’s lower atmosphere.
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 Planning & control for UASs docking and undocking mid-air;
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* Matched maneuvers between heterogeneous classes of aerial robots;

* Strategies for rapid deploy-capture-redeploy cycles for teams of UASs;

* Run time inference of protocols and global plans to orchestrate interactions; 25 =]
 Estimating aerial-sensor responses and studying better profile patterns.
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* Profile inversions likely to create poorer estimates even with proper filtering.
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