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G3

 We seek to physically accelerate the human response using a human-worn co-robot.  
 Physically assisting rapid human behaviors remains relatively unexplored.
 Obstacle avoidance experiments will be performed with flying objects and/or padded 

ground robots.  Physical obstacles enable humans to utilize their range of senses and 
physical intuition.

 Metrics of performance include time to reach safe zone, ability to avoid moving obstacles.
 Results can help inform a different class of assistive robots intended for enhancing 

transient behaviors rather than steady-state ones.
 A range of physical assistance strategies will be explored using a novel hip exoskeleton 

device.
 EMG based control can enhance customizability.

G2

 A human-centric approach relies on 
assisting human motions.

 Our team has already demonstrated how 
machine learning can be used to infer 
desired human speed.

 We seek to infer transient avoidance 
behaviors in order to provide suitable 
physical assistance.

 Primary desired output: direction of 
motion.

 Secondary desired output: type of motion 
(jump, lunge, sidestep).

 Machine learning will be used to gauge 
human intention based on human 
kinematics, kinetics, muscle recruitment, 
and knowledge of the environment.

 Intention recognition algorithms will be 
implemented on wearable sensors for 
human-centric performance outside of 
controlled settings.

 We can also feed in planner information 
that is dispatched to the operator. 

 Have examined a range of perceptual cues for dynamic threat avoidance.
 Tactile cues have shown particular promise in the presence of visual 

distraction.
 Currently combining vibrotactile cues with motion planning algorithms for 

AI-enabled human performance.
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 Unstructured environments such as construction sites, disaster areas, and conflict zones rely on human intuition, dexterity, and versatility.  
 These environments require teams of humans and machines to work together safely but lack the controlled safety of manufacturing plants 

or other indoor settings.
 Mobile and wearable co-robots can provide customizable human-centric safety by enhancing the situational awareness and physical 

response of the human operator.   P. Moolchandani, A. Mazumdar, A. Young, “Design of an Intent Recognition System for Dynamic, Rapid Motions in Unstructured Environments,” ASME Letters in Dynamic Systems 
and Control, April 2021.
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