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J Unstructured environments such as construction sites, disaster areas, and conflict zones rely on human intuition, dexterity, and versatility.

J These environments require teams of humans and machines to work together safely but lack the controlled safety of manufacturing plants

or other indoor settings.

response of the human operator.

J Project has supported 5 graduate students, an REU student, and multiple undergraduate students.

(J Mobile and wearable co-robots can provide customizable human-centric safety by enhancing the situational awareness and physical
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Tactile cues have shown particular promise in the presence of visual
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Have examined a range of perceptual cues for dynamic threat avoidance.

Currently combining perceptual cues with motion planning algorithms for

A. Bajpai, J. Powell, A. J. Young, A. Mazumdar, “Enhancing Physical Human Evasion of Moving Threats
Using Tactile Cues,” IEEE Transactions in Haptics, Dec. 2019. [doi: 10.1109/TOH.2019.2962664]
A. Bajpai, K. Feigh, A. Mazumdar, A. Young, “Influencing Human Escape Maneuvers with Perceptual Cues

in the Presence of a Visual Task,” IEEE Transactions on Human Factors, Aug. 2021.

[doi: 10.1109/THMS.2021.3108962]

A. Bajpai, A. Lu, K. Choi, A. Young, A. Mazumdar, “Using Autonomous Motion Planning to Improve
Human Safety in Dynamic Environments,” (In Prep).
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Predict Human Avoidance Response (Infer)

——XGBoost - EMG Only: 29°
——XGBoost - Kinematic Only: 22°

A human-centric approach relies on
assisting human motions.

Our team has already demonstrated
how machine learning can be used to

Mean Absolute Error

Kinetic Baseline: 17°
———XGBoost - Optimized Feature Set: 10°
———XGBoost - Kinetic Only: 9°

infer desired human speed.

We seek to infer transient avoidance

behaviors in order to provide suitable 0 02 0.4 o 08
physical assistance.
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) Classification | 41.5% | 25.4% | 13.2% | 9.7%
Secondary desired output: type of Error
. . . Total
motion (jump, lunge, sidestep). Classification | 17.9% | 10.3% | 4.8% | 2.7%
. . . Error
Machine learning will be used to gauge
human intention based on human IMU + SA
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recruitment, and knowledge of the
environment.
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Anirban Mazumdar (Pl), Aaron Young (Co-Pl), Aakash Bajpai, Carlos, Carrasquillo, Divya lyengar, Pooja Moolchandani, Kevin Choi, Jessica Carlson, Alexander Lu, Rajan Tayal
George W. Woodruff School of Mechanical Engineering
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Physically Assist Human Response (Execute)
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Transient Task:
Forward Dodge

We seek to physically enhance the human response using a human-worn co-robot.
Physically assisting rapid human behaviors remains relatively unexplored.

Current devices do not seem to enhance human agility, but can enhance human
metabolic performance.

A range of physically assistive impedance controllers have shown versatile benefit on a
novel hip exoskeleton device.

We use artificial potential fields to navigate humans around virtual hazardous obstacles.
Exoskeleton assistance has the potential to improve safety in the presence of visually
obstructed conditions.
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A. Bajpai, C. Carrasquillo, J. Carlson, J. Park, D. lyengar, K. Herrin, A. J. Young, A. Mazumdar, “Design and Validation of a
Versatile High Torque Quasi-Direct Drive Hip Exoskeleton,” IEEE Transactions on Mechatronics, (In Review)

N

0
w

w

N
v

Symmetric Lifting

Direction ;> < '

Estimation

P. Moolchandani, A. Mazumdar, A. Young, “Design of an Intent Recognition System for Dynamic, Rapid Motions in Unstructured Environments,” ASME Letters in Dynamic Systems
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