
― Demonstrated 50% tracking error reduction by the learning-based control method (vs. physical-model control)

― Learning-enhanced, wearable sensor-based design achieved 93% accuracy for activity detection, 5.7 degs error 

for 12 limb joint angles, 1.4 degs error for slope angle, and around 30 msec latency for human walking 

― Supported and trained six graduate students (five PhD and one MS level) and four undergraduate students 

(e.g., Rutgers SUPER and LSAMP programs) 

― Presented ten conference papers and seven journal publications in the past three years 
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• Human Cyber-Physical Balance Systems (HCPBS)

Figure 1: A set of  example of  human cyber-physical balance systems, such as 
Furuta pendulum, autonomous bikebot and bipedal walkers (from left to right). 

Research Goal and Challenges

❑ Goal: Develop a real-time machine 

learning-based control framework 

for human cyber-physical balance 

systems (HCPBS) 

❑ Challenges: Trajectory tracking 

and balance tasks are intertwined 

and no analytical casual controller 

to achieve exactly tracking 

• Scientific Impacts
― The proposed learning-based control of  HCPBS will generate algorithms and enabling tools for control 

design for complex human-in-the-loop CPS

― The characterization of  physical principle-based dynamic models and data-driven models enables a new 

control design for many human CPS applications

― The integration of  data-driven model and learning-based control provides new perspectives on 

performance enhancement of  safety-critical or mission-critical CPS in dynamic, uncertain environments

― The development of  hardware/software co-design accelerator brings new real-time machine 

learning schemes that enable the computationally intensive control systems in CPS applications 

• Overview Design of  Learning-based Control of  HCPBS  

Figure 2: Concepts of  the real-time machine learning-based control of  HCPBS.

Basic System Components

❑ A machine learning-based modeling 

and characterization

❑ Hardware co-design real-time learning-

based robust control

❑ Multiple robotic testbeds testing, 

validation and performance evaluation

• Machine Learning-enabled Human Walker Activity and Pose Estimation

― Real-time human walker activity and pose estimation by 

only one wearable inertial measurement unit (IMU)

― Long short-term memory (LSTM) models for different 

activities and gait phase estimation

― Floor slope and human turning angles are considered

― Mapping between the embedded motion manifolds and 

human joint angles for real-time pose estimation
Figure 3: Schematic of  the multi-layer learning-enabled, 
wearable sensor-based activity and pose estimation.

▪ Gaussian Process Dynamic Models (GPDM) is used to map human joint 
angles 𝒚 ∈ ℝ𝐷 to latent state variable 𝒙 ∈ ℝ𝑑,  where 𝑑 ≪ 𝐷. For activity 
𝑎𝑖,  𝑖 = 1,⋯ ,𝑁, and slope angle 𝜃, the GPDM is given as

ℳ𝑖 𝜃 ∶ ቐ

𝑑𝒙𝑖
𝑑𝑠

= 𝒇𝑖 𝒙𝑖 , 𝜶𝑖 , 𝒖𝑖 +𝝎𝑝𝑖

𝒚𝑖 = 𝒈𝑖 𝒙𝑖 , 𝜷𝑖 , 𝒖𝑖 +𝝎𝑜𝑖

where 𝒖𝑖, 𝑠 and 𝝎 are IMU measurements, gait variable and model noises, 

respectively. 𝜶𝑖 and 𝜷𝑖 are GP parameters (obtained by the learning 

process)

• Broader Impacts

Figure 4: GPDM for pose estimation for 
various activities and slope angles

• Autonomous Bikebot with Mobile Manipulation and Assistive Leg 

― Implemented the external/internal convertible 

(EIC)-based control (i.e., physical model-based) 

and the GP-based learning control 

― Two extensions were developed for the bikebot

with: (1) a 5-DOF onboard manipulator, and (2) 

two 3-DOF assistive legs

― Developed and tested learning-enhanced control 

of  the mobile manipulation and balance control 

with assistive leg impulsive actuation 

Figure 6 (a) An autonomous bikebot with onboard 5-DOF manipulator 
(b) An autonomous bikebot with two 3-DOF assistive legs. 

• Learning-based Robust Control Design 

― The robot dynamics are captured by an external (actuated) and an 

internal (unactuated) subsystems

― Problem statement: 

― Gaussian process (GP) is used to estimate the external and internal 

subsystems dynamics
Figure 5: Schematic of  the learning-based 
control design.

▪ The external subsystem tracking and internal subsystem balance errors are proven to be bounded

▪ The predictive GP covariance is integrated with the MPC design to improve control robustness

▪ No balanced training data is needed and it is attractive for field testing

▪ Experimentally validated and demonstrated in rotary pendulum and autonomous bikebot testbed


