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Figure 1: A set of example of human cyber-physical balance systems, such as Kand 5O ZReLiierl il controﬂer/ = The external subsystem tracking and internal subsystem balance errors are proven to be bounded

Furuta pendulum, autonomous bikebot and bipedal walkers (from left to right). to achieve exactly tracking = The predictive GP covariance is integrated with the MPC design to improve control robustness
= No balanced training data is needed and it 1s attractive for field testing
= Experimentally validated and demonstrated in rotary pendulum and autonomous bikebot testbed
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— Implemented the external/internal convertible
(EIC)-based control (i.e., physical model-based)
and the GP-based learning control
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Figure 2: Concepts of the real-time machine learning-based control of HCPBS.
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— Developed and tested learning-enhanced control
of the mobile manipulation and balance control Figure 6 (2) An autonomous bikebot with onboard 5-DOF manipulator

* Machine Learning-enabled Human Walker Activity and Pose Estimation with assistive leg impulsive actuation (b) An autonomous bikebot with two 3-DOF assistive legs.
— Real-time human walker activity and pose estimation by Walking Siope . .
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Figure 3: Schematic of the mulfi-layer learning-enabled performance enhancement of safety-critical or mission-critical CPS in dynamic, uncertain environments

wearable sensor-based activity and pose estimation. — The development of hardware/software co-design accelerator brings new real-time machine
" Gaussian Process Dynamic Models (GPDM) is used to map human joint learning schemes that enable the computationally intensive control systems in CPS applications
angles y € RP to latent state variable x € R%, where d < D. For activity
a;, i =1,---, N, and slope angle 8, the GPDM is given as * Broader ImPaCtS
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6) _ — Demonstrated 50% tracking error reduction by the learning-based control method (vs. physical-model control)
M;(0) : § ds
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where u;, s and w are IMU measurements, gait variable and model noises,

— Learning-enhanced, wearable sensor-based design achieved 93%o accuracy for activity detection, 5.7 degs error
for 12 limb joint angles, 1.4 degs error for slope angle, and around 30 msec latency for human walking

— Supported and trained six graduate students (five PhD and one MS level) and four undergraduate students

process) (e.g., Rutgers SUPER and LSAMP programs)

various activities and slope angles — Presented ten conference papers and seven journal publications in the past three years
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respectively. a; and B; are GP parameters (obtained by the learning
Figure 4: GPDM for pose estimation for
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