Real-Time Wireless Control Networks Challenges and Directions

Chenyang Lu
Computer Science and Engineering

Outline

- WirelessHART: a starting point
- Real-time scheduling for WirelessHART
- Challenges and directions of wireless control networks

WirelessHART

Industrial wireless standard for process monitoring & control

Characteristics

- Real-time and reliable in <u>hash industrial environments</u>
- Time Division Multiple Access (10ms slot)
- Multi-channel
- Route diversity
- No spatial reuse of the same channel
- Centralized network manager
 - Collect topology information from the network
 - Generate routes and global transmission schedule
 - Recalculate when devices/links break

Time Synchronization

- WirelessHART protocol
 - Gateway is the root source of time.
 - □ When a device receives a packet
 - $\Delta t = time of arrival expected arrival time based on own clock.$
 - sends Δt to the sender via ACK.
 - The sender adjusts time.
- Benefits of accurate clocks
 - Reduce guard time used to accommodate clock skew
 - ✓ Shorter slot
 - Reduce frequency of clock sync
 - Lower overhead
 - ✓ Better scalability

Real-Time Scheduling for WirelessHART

Goals

- Real-time transmission scheduling meet end-to-end deadlines
- Fast schedulability analysis -> online admission control and adaptation

Approach

- Leverage real-time scheduling theory for processors
- Incorporate wireless characteristics

Initial Results

- Dynamic priority transmission scheduling [RTSS'10]
- Fixed priority transmission scheduling
 - End-to-end delay analysis [RTAS'11]
 - Priority assignment [ECRTS'11]
- Rate selection for wireless control [RTAS'12]

Real-Time Scheduling for WirelessHART

Goals

- Real-time transmission scheduling meet end-to-end deadlines
- Fast schedulability analysis -> online admission control and adaptation

Approach

- Leverage real-time scheduling theory for processors
- Incorporate wireless characteristics

Initial Results

- Dynamic priority transmission scheduling [RTSS'10]
- Fixed priority transmission scheduling
 - End-to-end delay analysis [RTAS'11]
 - Priority assignment [ECRTS'11]
- Rate selection for wireless control [RTAS'12]

Real-Time Flows

Flow: sensor->controller->actuator over multi-hops

- highest lowest priority

 A set of flows $F = \{F_1, F_2, ..., F_N\}$ ordered by priorities
- Each flow F_i is characterized by
 - A source (sensor), a destination (actuator), route through the gateway (where controller is located)
 - A period P_i
 - A deadline D_i ($\leq P_i$)
 - Total number of transmissions C_i along the route

Scheduling Problem

- Fixed priority scheduling
 - Transmissions ordered based on the priorities of their flows

end-to-end delay of F_i

- Flows are schedulable if $R_i \leq D_i \quad \forall F_i \in F$ deadline of F_i
- Goal: efficient end-to-end delay analysis
 - Give an upper bound of the end-to-end delay for each flow
 - Used for online admission control and adaptation

End-to-End Delay Analysis

- A lower priority flow is delayed due to
 - channel contention: when all channels are assigned to higher priority flows in a slot
 - conflict: its transmission and a transmission
 of a higher-priority flow involve a same node

Each type of delay is analyzed separately

Combine both delays -> end-to-end delay bound

Insights

- Transmission vs. multiprocessor scheduling
 - Similar: channel contention
 - Different: transmission conflicts
- Channel contention > multiprocessor scheduling
 - \Box A channel \rightarrow a processor
 - ightharpoonup Flow $F_i \rightarrow$ a task with period P_i , deadline D_i , execution time C_i
 - Leverage existing response time analysis for multiprocessors
- Account for delays due to conflict with high-priority flows

Acceptance Ratio (Testbed Topology)

- Number of channels=12
- Priority assignment policy: Deadline Monotonic

What we have so far...

- Real-time wireless is a reality today
 - Industrial standards: WirelessHART, ISA100
 - Real deployments in the field
- Starting a real-time scheduling theory for wireless
 - Leverage real-time processor scheduling
 - Incorporate unique wireless properties
- What's next?

Wireless Dynamics

Challenges

- Wireless links change dynamically.
- Requires global rescheduling.
- Current approach too rigid?

Approaches

- Flexible and dynamic scheduling
 - Ex: RTQS avoids conflicts by enforcing interrelease times locally [RTSS'07]
- Mixed criticality in wireless
 - Sacrifice non-critical flows when links break
 - Maintain guarantees to critical flows

Scheduling-Control Co-Design

Challenge

- Wireless resource is scarce and dynamic
- Cannot afford separating scheduling and control

Approaches

- Scheduling to optimize control objectives, not to meet deadlines
 - Ex: Rate selection for wireless control [RTAS'12]
- Achieve fault tolerance through wireless and control co-design
- Scheduling for self-triggered and event-based control

Scalability

Challenges

- Centralized approach does not scale
 - Network management
 - Feedback control loop
- WirelessHART: A gateway can support up to 80 devices

Approaches

- Hierarchical network management
- Local adaptation
- Peer-to-peer control
- Synchronized distributed clocks as time sources
- Key: Scale without losing predictability!

Summary

- Real-time wireless is a reality today
 - Industrial standards: WirelessHART, ISA100
 - Real deployments in the field
- Starting a real-time scheduling theory for wireless
 - Leverage real-time processor scheduling
 - Incorporate unique wireless properties
- Tremendous opportunities ahead
 - Optimize for control
 - Robust under wireless dynamics
 - Scale to 10,000+ nodes
- Integrate protocol design and scheduling theory

References

- A. Saifullah, Y. Xu, C. Lu and Y. Chen, End-to-End Delay Analysis for Fixed Priority Scheduling in WirelessHART Networks, RTAS 2011.
- A. Saifullah, C. Wu, P. Tiwari, Y. Xu, Y. Fu, C. Lu and Y. Chen, Near Optimal Rate Selection for Wireless Control Systems, RTAS 2012.
- A. Saifullah, Y. Xu, C. Lu and Y. Chen, Priority Assignment for Real-time Flows in WirelessHART Networks, ECRTS 2011.
- A. Saifullah, Y. Xu, C. Lu and Y. Chen, Real-time Scheduling for WirelessHART Networks, RTSS 2010.
- O. Chipara, C. Lu and G.-C. Roman, Real-time Query Scheduling for Wireless Sensor Networks, RTSS 2007.

http://wsn.cse.wustl.edu/index.php/Real-Time_Wireless_Control_Networks