#### Real-time Semantic Computer Vision for Co-robotics Towards Realistic Predictors

Pei Wang, Nuno Vasconcelos

Statistical Visual Computing Lab, UC San Diego









- computer vision algorithms are optimistic
- they attempt to recognize/ detect/segment/ all instances
- without regard to how hard the task is
- this is not what humans do!





cristiano ronaldo





#### Humans

 analyze the difficulty of each task



#### Humans

- analyze the difficulty of each task
- accept tasks that are doable
  - such as classifying popular dog breeds



Dalmatian



Golden retriever



### Humans

- analyze the difficulty of each task
- accept tasks that are doable
  - such as classifying popular dog breeds
- but refuse tasks that are too hard
  - such as classifying exotic dog breeds
- they just say "sorry, can't do it"



Dalmatian







Tibetan Mastiff



Peruvian Inca Orchid



- we refer to this as realism
- this trait is critical for many applications,
  - circumventing risk in autonomous driving

| <image/> |
|----------|
|          |



- we refer to this as realism
- this trait is critical for many applications,
  - circumventing risk in autonomous driving
  - tumor detection and classification



- we refer to this as realism
- this trait is critical for many applications,
  - circumventing risk in autonomous driving
  - tumor detection and classification
- vision system should either
  - reject to perform the hard task
  - request additional information from other sensors





#### **Realistic classifier**

- standard classifier
  - classifies all examples
- realistic classifier is defined as a classifier
  - that rejects examples deemed too hard
  - to guarantee a target performance on the accepted examples



#### **Realistic classifier**

- implemented as a sequence of
  - hardness predictor: assigns hardness score to each example
  - score thresholded to reject hard examples
  - classifier only applied to examples that can be "realistically" classified



#### Learning Hardness Predictor

- adversarial learning procedure
  - classifier and hardness predictor learned alternately
  - classifier learned with variant of cross entropy loss  $L_m$
  - hardness predictor learned with a loss that encourages large hardness scores for misclassified examples

SVCL 🗢 UCSD



#### Experiments

- Benefits of joint optimization:
  - accuracy and hardness score distribution evolution on MNIST



- as the classifier improves the distribution shifts to the left
- fewer hard examples, consistent with better classifier

#### Experiments

#### Removed sample number vs target performance



• In order to guarantee a target performance, realistic predictors can accept and classify more examples than non-realistic ones.

### Conclusions

- computer vision systems try to process all instances
- this optimistic attitude can lead to critical failures in some applications
- realistic classifiers reject some examples to guarantee a target performance on the ones they process
- proposed an adversarial architecture for realistic prediction, based on joint learning of hardness predictor and classifier
- this was shown to
  - improve classification when hard examples are rejected
  - superior to thresholding of confidence scores for example rejection



# Thank You!

Welcome to our poster for more details

