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Motivation

e computer vision
algorithms are
optimistic

« they attempt to
recognize/
detect/segment/ all
instances

« without regard to how
hard the task is

* this is not what

cristiano ronaldo
humans do!
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Humans

« analyze the difficulty
of each task
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Humans
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« accept tasks that are

doable
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Humans

« analyze the difficulty
of each task
« accept tasks that are

doable
— such as classifying
popular dog breeds

* but refuse tasks that

are too hard
— such as classifying
exotic dog breeds
« they just say “sorry,
can’t do it”
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Motivation

« we refer to this as realism

 this trait is critical for many
applications,
— circumventing risk in
autonomous driving

missed
detections
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Motivation

« we refer to this as realism

 this trait is critical for many

applications, |

— circumventing risk in s e
autonomous driving

— tumor detection and
classification

 vision system should either
— reject to perform the hard task
— request additional information \

from other sensors
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Realistic classifier

» standard classifier

— classifies all examples
e realistic classifier is defined as a classifier

- that rejects examples deemed too hard

— to guarantee a target performance on the accepted examples
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Realistic classifier

« implemented as a sequence of
— hardness predictor: assigns hardness score to each example
— score thresholded to reject hard examples
— classifier only applied to examples that can be “realistically” classified
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Learning Hardness Predictor

« adversarial learning procedure
— classifier and hardness predictor learned alternately
— classifier learned with variant of cross entropy loss L,,
— hardness predictor learned with a loss that encourages large
hardness scores for misclassified examples
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Experiments

» Benefits of joint optimization:
— accuracy and hardness score distribution evolution on MNIST

Accuracy (%)
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epoch

 as the classifier improves the distribution shifts to the left

- fewer hard examples, consistent with better classifier
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Experiments

Removed sample number vs target performance
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H realistic non-realistic
« In order to guarantee a target performance, realistic

predictors can accept and classify more examples than
non-realistic ones.
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Conclusions

computer vision systems try to process all instances

this optimistic attitude can lead to critical failures in some
applications

realistic classifiers reject some examples to guarantee a
target performance on the ones they process

proposed an adversarial architecture for realistic
prediction, based on joint learning of hardness predictor
and classifier

this was shown to

— improve classification when hard examples are rejected

— superior to thresholding of confidence scores for example
rejection
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Thank You!

Welcome to our poster for more details
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