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Motivation
• computer vision 

algorithms are 
optimistic

• they attempt to 
recognize/ 
detect/segment/ all 
instances

• without regard to how 
hard the task is

• this is not what 
humans do!
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Humans
• analyze the difficulty 

of each task
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Humans
• analyze the difficulty 

of each task
• accept tasks that are 

doable
– such as classifying 

popular dog breeds

Dalmatian

Golden retriever
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Humans
• analyze the difficulty 

of each task
• accept tasks that are 

doable
– such as classifying 

popular dog breeds
• but refuse tasks that 

are too hard 
– such as classifying 

exotic dog breeds
• they just say “sorry, 

can’t do it”

Peruvian Inca Orchid

Tibetan Mastiff
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Motivation
• we refer to this as realism

• this trait is critical for many 
applications, 
– circumventing risk in 

autonomous driving
– tumor detection and 

classification

• vision system should either
– reject to perform the hard task
– request additional information

from other sensors

Figure 2. Illustration of an adversary generating a dynamic target segmentation for hiding pedestrians.
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the loss gradient averaged over the entire training data. A
potential issue of this approach is overfitting to the train-
ing data which would reduce generalization of ⌅ to unseen
inputs. Overfitting is actually likely given that ⌅ has the
same dimensionality as the input image and is thus high-
dimensional. We adopt a relatively simple regularization
approach by enforcing ⌅ to be periodic in both spatial di-
mensions. More specifically, we enforce for all i, j 2 I the
constraints ⌅i,j = ⌅i+h,j and ⌅i,j = ⌅i,j+w for a pre-
defined spatial periodicity h,w. This can be achieved by
optimizing a proto-perturbation ⌅̂ of size h ⇥ w and tile it
to the full ⌅. This results in a gradient averaged over the
training data and all tiles:
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with R, S denoting the number of tiles per dimension and
[r, s] = {i, j | [rh  i < (r+1)h]^ [sw  j < (s+1)w]}.

As we will show in Section 4, the quality of the gener-
ated universal perturbation depends crucially on the size m
of the train set. As our method for generating universal per-
turbations does not require ground-truth labels, we may in
principle use arbitrary large unlabeled data sets. Neverthe-
less, we also investigate how well universal perturbations
can be generated for small m since large m requires con-
siderable computational resources and also more queries to
f✓, which might increase monetary costs or the risk of being
identified.

4. Experimental Results
We evaluated the proposed adversarial attacks against se-

mantic image segmentation on the Cityscapes dataset [5],

which consists of 3475 publicly available labeled RGB im-
ages (2975 for training and 500 for validation) with a res-
olution of 2048 ⇥ 1024 pixels from 44 different cities. We
used the pixel-wise fine annotations covering 19 frequent
classes. For computational reasons, all images and labels
were downsampled to a resolution of 1024 ⇥ 512 pixels,
where for images a bilinear interpolation and for labels a
nearest-neighbor approach was used for down-sampling.
We trained the FCN-8s network architecture (see Section
2.1) for semantic image segmentation on the whole train-
ing data and achieved a class-wise intersection-over-union
(IoU) on the validation data of 64.8%.

We generated the universal perturbations on (subsets of)
the training data and evaluated them on unseen validation
data. When not noted otherwise, we used " = 10 in the
experiments. This value of " was also used by Moosavi-
Dezfooli et al. [16] and corresponds to a level of noise
which is only perceptible for humans at closer inspection.
Moreover, we set the number of iterations to n = 60.

Static Target Segmentation As Cityscapes does not in-
volve static scenes, we evaluated an even more challeng-
ing scenario: namely to output a static target scene seg-
mentation which has nothing in common with the actual
input scene present in the image. For this, we selected
an arbitrary ground-truth segmentation (monchenglad-
bach 000000 026602 gtFine) from Cityscapes as target.
We set the number of training images to m = 2975, which
corresponds to the number of images in the Cityscapes train
set. Moreover, we used the unweighted loss Jss, and did
not use periodic tiles, i.e., h = 512, w = 1024. An illustra-
tion for this setting on unseen validation images is shown in
Figure 3. The adversary achieved the desired target segmen-
tation nearly perfectly when adding the universal perturba-
tion that was generated on the training images. This is even
more striking as for a human, the original scene, which has
nothing in common with the target scene, remains clearly
dominant.

Figure 4 shows an illustration of the generated universal
perturbation for " = 20. This perturbation is highly struc-
tured and the local structure depends strongly on the tar-
get class. When comparing the perturbation with the static
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Realistic classifier
• standard classifier

– classifies all examples
• realistic classifier is defined as a classifier 

– that rejects examples deemed too hard
– to guarantee a target performance on the accepted examples

classifier
classifierexample 

filtering

rejected

error

target

error

target

standard classifier realistic classifier
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Realistic classifier
• implemented as a sequence of

– hardness predictor: assigns hardness score to each example
– score thresholded to reject hard examples
– classifier only applied to examples that can be “realistically” classified 

hardness 
predictor

reject

classifierT

Realistic classifier
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Learning Hardness Predictor
• adversarial learning procedure

– classifier and hardness predictor learned alternately
– classifier learned with variant of cross entropy loss !"
– hardness predictor learned with a loss that encourages large 

hardness scores for misclassified examples
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Experiments
• Benefits of joint optimization:

– accuracy and hardness score distribution evolution on MNIST 

• as the classifier improves the distribution shifts to the left
• fewer hard examples, consistent with better classifier

12
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Experiments
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target accuracy (%)

removed 
percentage (%)

• In order to guarantee a target performance, realistic 
predictors can accept and classify more examples than 
non-realistic ones. 

0%

5%

10%

15%

20%

25%

94.5 95 95.5 96 96.5 97

Removed sample number vs target performance

realistic non-realistic



SVCL

Conclusions
• computer vision systems try to process all instances
• this optimistic attitude can lead to critical failures in some 

applications
• realistic classifiers reject some examples to guarantee a 

target performance on the ones they process
• proposed an adversarial architecture for realistic 

prediction, based on joint learning of hardness predictor 
and classifier

• this was shown to
– improve classification when hard examples are rejected
– superior to thresholding of confidence scores for example 

rejection
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Thank You!
Welcome to our poster for more details
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