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Overview

� This research investigates:

� Decision-making in stochastic dynamical systems with many

competing agents

� Outline of contributions:

� Nash Certainty Equivalence (NCE) Methodology

� NCE for Linear-Quadratic-Gaussian (LQG) systems

� Connection with physics of interacting particle (IP) systems

� McK-V-HJB theory for fully nonlinear stochastic differential games

� Invariance principle for controlled population behaviour

� Models with interaction locality

� Derivation the standard consensus dynamics from the NCE

equations.
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Some Facts and Implications

� Physics–Behavior of huge number of essentially identical infinitesimal

interacting particles is basic to the formulation of statistical mechanics

as founded by Boltzmann, Maxwell and Gibbs

� Game Theoretic Control System – Many competing agents

� An ensemble of essentially identical players seeking

individual interest

� Individual mass interaction

� Fundamental issue: how to relate individual actions

to mass behavior?
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Part I – Individual Dynamics and Costs

Individual dynamics:

dzi = (aizi + bui)dt + αz(n)dt + σidwi, 1 ≤ i ≤ n. (1)

� zi: state of the ith agent

� z(n): the population mean z(n) △
= 1

n

∑n
i=1 zi

� ui: control

� wi: noise (a standard Wiener process)

� n: population size

For simplicity: Take the same control gain b for all agents.
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Part I – Individ. Dynamics and Costs (ctn)

Individual costs:

Ji(ui, νi) = E

∫ ∞

0
e−ρt[(zi − νi)

2 + ru2
i ]dt (2)

We are interested in the case νi = Φ(z(n))
△
= Φ( 1

n

∑n
k=1 zk)

Φ: nonlinear and Lipschitz

Main feature and Objective:

� Weak coupling via costs and dynamics

� Connection with IP Systems (for model reduction in McKean-Vlasov

setting) with be clear later on

� Develop decentralized optimization
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Part I – Motivational Background and Related Works

� Economic models (e.g., production output planning) where each

agent receives average effect of others via Market (Lambson)

� Advertising competition game models (Erikson)

� Wireless network resource allocation (e.g., power control, HCM)

� Stochastic swarming (Morale et. al.); “selfish herd" (such as fish)

reducing indiv. predation risk by joining group (Reluga & Viscido)

� Public health – Voluntary vaccination games (Bauch & Earn)

� Industry dynamics with many firms (Weintraub, Benkard, & Roy)

� Mathematical physics and finance (Lasry and Lions)

� Admission control in communication networks.
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Part I – Control Synthesis via NCE

Mass influence

i
z u

m(t)

i i Play against mass

� Under large population conditions, the mass effect concentrates into a

deterministic quantity m(t).

� A given agent only reacts to the mass effect m(t) and any other

individual agent becomes invisible.

� Key issue is the specification of m(t) and associated individual action -

Look for certain consistency relationships
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Part III – LQG-NCE Equation Scheme

Assume zero initial mean, i.e., Ezi(0) = 0, i ≥ 1. Based on population limit,

the Fundamental NCE equation system:

ρsa =
dsa

dt
+ asa −

b2

r
Πasa + αΠaz̄ − z∗, (5)

dza

dt
= (a − b2

r
Πa)za −

b2

r
sa + αz̄, (6)

z =

∫

A
zadF (a), (7)

z∗ = Φ(z). (8)

Basic idea behind NCE(z∗) with parameters F (·), a, b, α, r:

� Solve z∗ tracking problem for one agent.

� Use popul. average z to approximate coupling term 1
n

∑n
k zk.

� Individual action ui is optimal response to z∗.

� Collectively produce same z∗ assumed in first place.
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Part V – Connection with Statistical Mechanics

� Boltzmann PDE describing evolution of spatial-velocity (x − v)

distribution u(t, x, v) of huge number of gas particles

� Solution to spatially homogeneous Boltzman PDE (for u(t, v)) has a

probabilistic interpret. via McKean’s Markov system:

� Generator depends on “current density" of the process

� Thus, there exists a driving effect from the mass
• This feature also appears in our diffusion based models, where

current density affects the drift
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Part IX – Simulations (cnt)

� For disconnected graphs we have the convergence of each group.

0 1 2 3 4 5
−60

−40

−20

0

20

40

60
State of agensts of a disconnected graph and N=100

time

(c) Disconnected graph with two connected groups.
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Concluding Remarks

� A theory for decentralized decision-making with many competing agents

� Control synthesis via NCE methodology. Consequences for Rational

Expectations and Macroeconomic Policy?

� Existence of asymptotic equilibria (first in population then in time)

� Application to network call admission control (e.g. Ma, Malhamé, PEC)

� Ideas closely related to the physics of interacting particle systems.

� Suggest a convergence of control theory, multi-agent systems theory

and statistical physics into a

cybernetic-math physics synthesis

for mass competitive-cooperative decision problems.
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