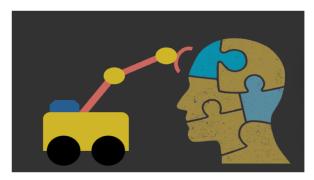
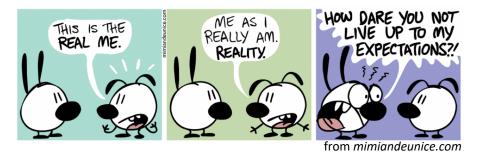
EAGER: Reconciling Model Discrepancies in Human-Robot Teams

Yu ("Tony") Zhang Arizona State University, USA yzhan442@asu.edu

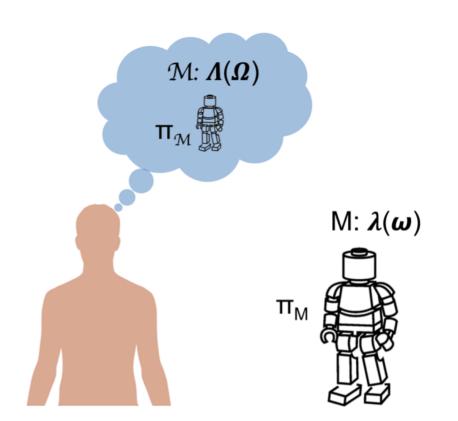


Cooperative Robotic Systems

Motivation

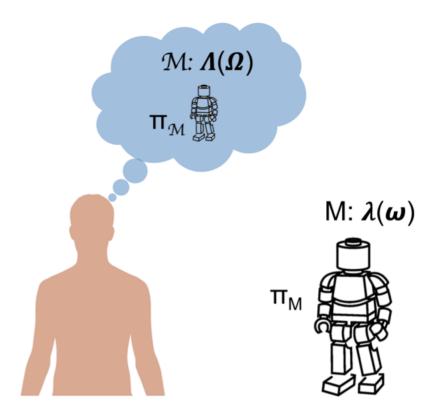


- Teammates have many conscious and subconscious *expectations* of others in terms of others' plans or behaviors
- The expected model (EM) and actual model (DM) may differ, leading to unmatched expectations, loss of situation awareness and trust
- > This calls for general methods for *model reconciliation*

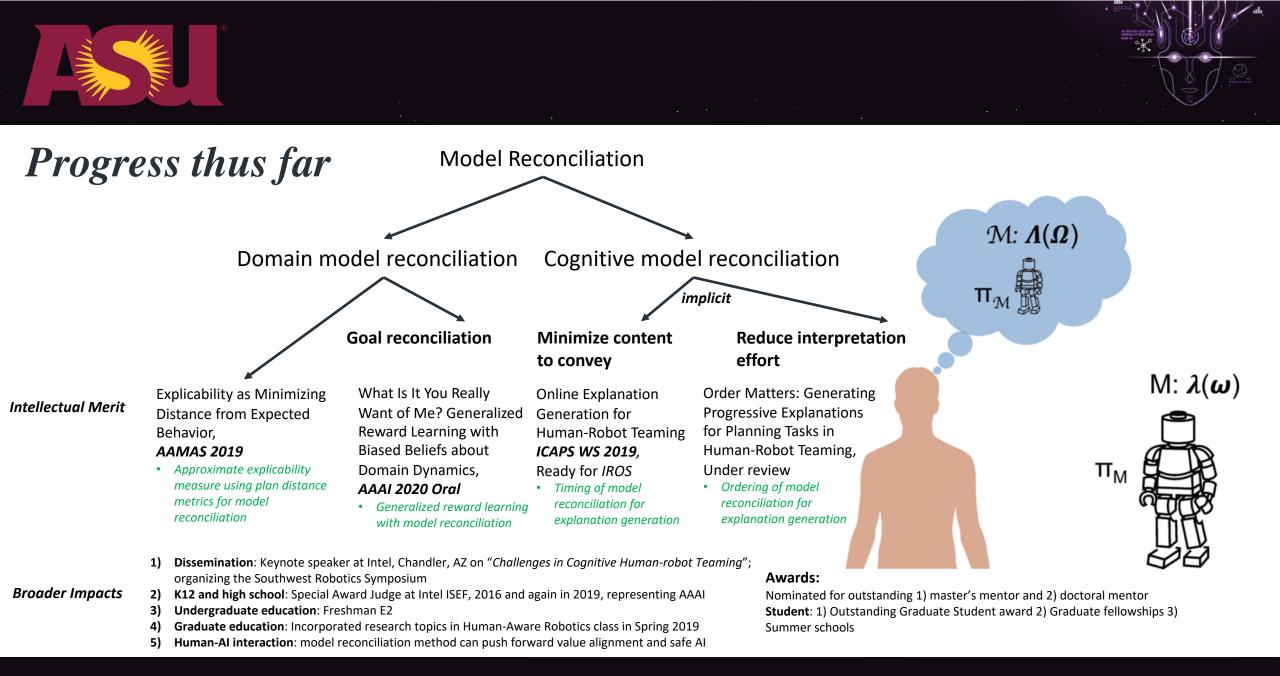


Taxonomy of model reconciliation

Туре	Align M with $\mathcal M$		Align $\mathcal M$ with M		
		Exp. AI	Exp. AI	Exp. AI Implicit	
	Explicit	Implicit	Explicit		
Goal					
	Rwd Lrn [31, 33]		Inv Grd[122]	Lgb Pln [34]	
	Pln Rec[22,73]	IRL [5, 138]	Int Prj [7,56]	Pln CoE [77]	
	Ins Und [17, 123]		Gol Aug[23]	Com Act [75]	
Behavior					
	Imi Lrn[107,111]	NT 7	Gue Tun [04]	NT 7	
	HuW Pln [21, 26]	NA	Crs Trn[94]	NA	
Domain					
	Opn Wrd[120]	DT 1 2	RT 1, 2	Exp Inc [79]	
	Dom Lrn [135]	RT 1, 2	Exu Gen* [53, 60]	Com Act [75]	
Cognition					
	Met Rsn [110]	D-D [02]	272	DT 2	
	Com Rat [47]	DvP [92]	NA	RT 3	



Prior work has focused mostly on model reconciliation with domain dynamics with other parts fixed or assumed.

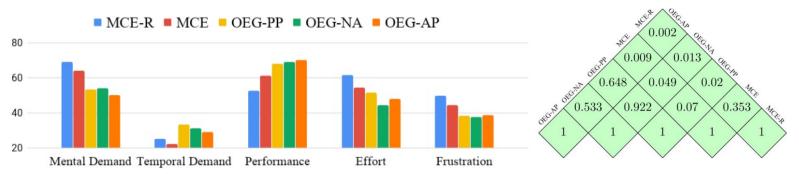


Reconciling cognitive models

Timing for model reconciliation as explanation generation:

- Breaking down a complex explanation into smaller parts and convey them in an online fashion, to save short-term or work memory
- Identify long-term dependencies using planning methods
- Minimize information content to convey for model reconciliation
- Developed and evaluated three different online explanation generation methods

	MCE-R	MCE	OEG-PP	OEG-NA	OEG-AP	Truth
Accuracy	0.746	0.804	0.858	0.852	0.872	
# Actions	8.789	7.263	5.250	5.330	4.940	2.0/30

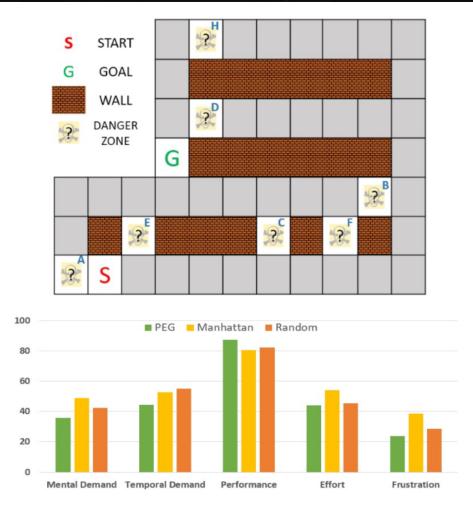


M. Zakershahrak, Z. Gong, N. Sadassivam, A. Hanni, Y. Zhang, Online Explanation Generation for Human-Robot Teaming, in ICAPS Workshop on Explainable AI Planning 2019.

Reconciling cognitive models

Ordering for model reconciliation as explanation generation:

- Identify the desirable order of conveying information to minimize interpretation effort. Order matters!
- Developed learning method to associate features with ease of understanding in a sequential model
- Among these features, plan editing distance played an important role
- Evaluated explanation generation with only plan editing distance and results looked promising

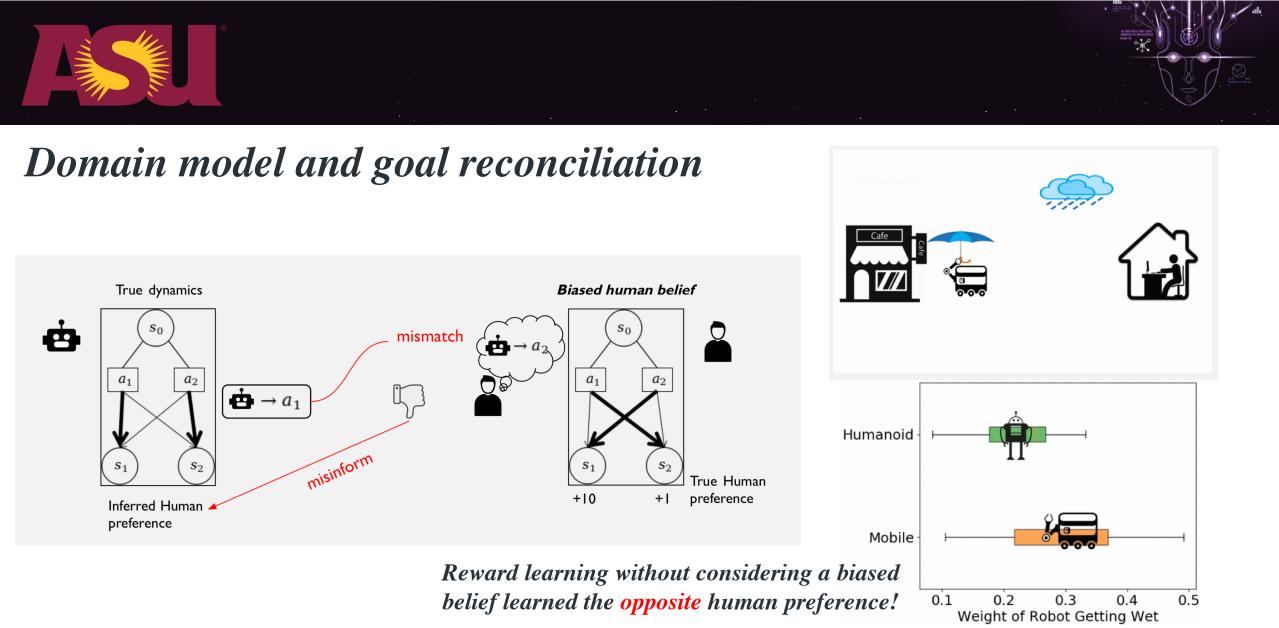


M. Zakershahrak, R. Shashank, A. Sharma, Z. Gong, Y. Zhang, Order Matters: Generating Progressive Explanations for Planning Tasks in Human-Robot Teaming, under review

Domain model and goal reconciliation

Problem settings:

- (Non-expert) Human user observes the robot's behavior and provides feedbacks.
- Robot learns the human preferences from the feedbacks.



Intellectual merit

Recover the human's preferences or recover the domain dynamics

- Inverse Reinforcement Learning and Reward Learning (Russell 1998, Ng et al. 2000, Abbeel et al. 2004, Ziebart et al. 2008, Daniel et al. 2014)
- Dynamics learning given the human's reward function (Reddy et al. 2018; Unhelkar et al. 2019)
- Simultaneous Estimation of Rewards and Dynamics (Herman et al. 2016)
- > We generalize these learning methods to consider our problem settings:
 - \checkmark The human may have a *biased hidden belief* about the robot's domain dynamics
 - ✓ The robot must infer about the human's preferences from their feedbacks only, subject to such biased beliefs

[Note that, robot trajectories are not informative for learning the human biased belief.]

Problem formulation

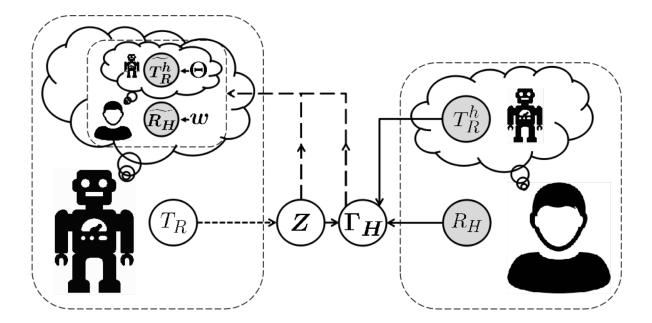
Given:

Robot's demonstrations Z; Human's ratings Γ_H for each instance in Z.

To determine:

Human's true reward function R_H ; Human's belief T_R^h about robot's domain dynamics.

In this work, our goal is to recover the **true reward function** and **biased beliefs** together.



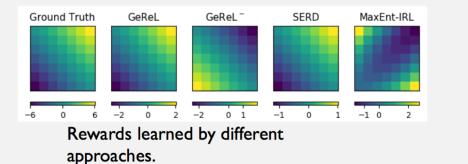
Problem solution

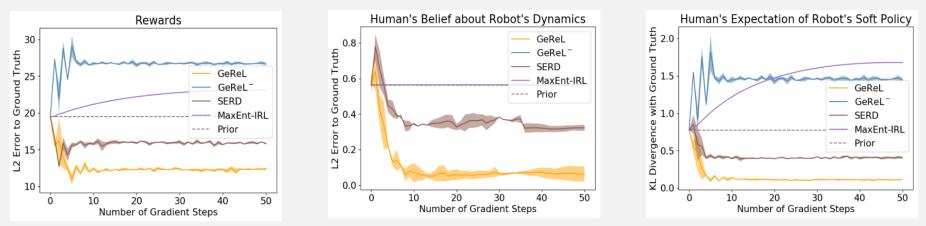
Parameterization

• Formulate the reward function R_H for a state s as follows: $R_H(s) = w \cdot \Phi(s)$ where $w \sim \mathcal{N}(\mu, \Sigma)$ • Belief about robot domain dynamics are formulated using a set of Dirichlet distribution: $\Theta = [\theta_1, \theta_2, \dots, \theta_{|S| \times |A|}]$ where $\theta_i \sim \text{DIR}(\alpha_i)$ • Our goal is to learn the posterior distribution: $p(w, \Theta | \Gamma_H, Z)$ is approximated by $q(w, \Theta | \mu, A)$ Variational posterior of the latent variables governed by μ and $\mathcal{A} = [\alpha_1, \alpha_2, \dots, \alpha_{|S| \times |A|}]$

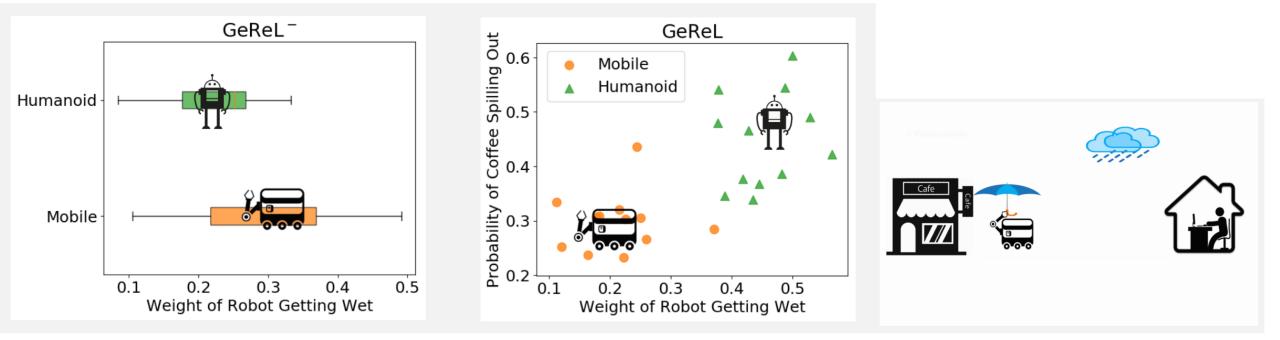
Results

- GeReL: this work
- **GeReL**⁻: basically uses GeReL without updating the domain dynamics.
- Variant of SERD: apply GeReL framework with soft Bellman equation.
- MaxEnt-IRL: demonstration generated using ground truth model.

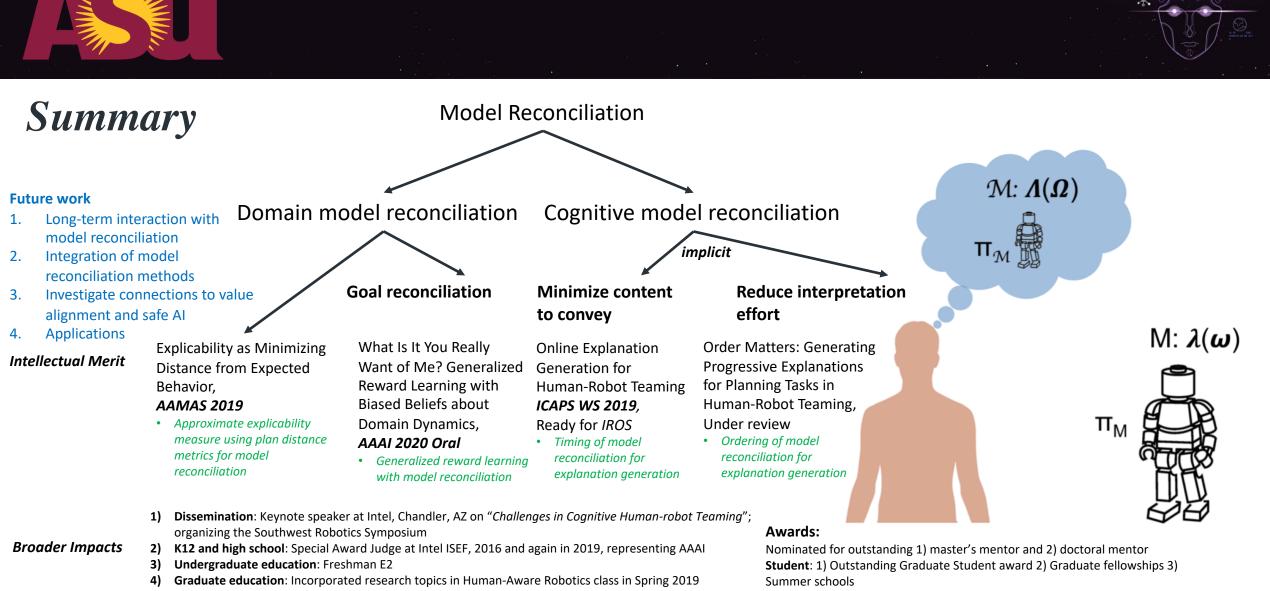




Results



With our method



5) Human-Al interaction: model reconciliation method can push forward value alignment and safe Al