
Recovering High Level Constructs from C++ Binaries
Rukayat Ayomide Erinfolami(rerinfo1@binghamton.edu) and Aravind Prakash(aprakash@binghamton.edu)

Why recover constructs from 
Binaries?

●Useful for enforcing CFI policies on binaries.
●Source code based defenses reveal design
information. May not be attractive to vendors.
Consumers have to rely on binary level solutions
for security.
●Source code may be unavailable to implement
source code base CFI defenses.
●Useful for program understanding.

On Design Inference from Binaries 
Compiled using Modern C++ Defenses
●All modern C++ defenses either explicitly embed
design information into the binary,

e.g FCFI & Shrinkwrap, SafeDispatch,
TypeSan (TS), CaVer (CV) and Hextype.

●Or implicitly embed,
e.g OVT, VTrust, VIP.

●These defenses reveal a significant aspect of
design with vendors do not necessarily want to
make public. Results
Program FCFI OVT TS CV
Spidermonkey 0.33 0.35 - 0.38
Xalanc 0.02 0.23 0.15 0.43
Soplex 0.05 0.07 0.13 0.18
Povray 0.1 0.33 0.11 0.45
Omnetpp 0 0.21 0.1 0.32
DealII 0.12 - 0.16 0.86
Namd 0 1 0 0
CplusplusThread 0 0.09 0 0.2

Table 1: Graph edit distance (GED) of class hierarchy graph recovered
from binaries compiled with different compiler based defenses. GED close
to 0 = high similarity, close to 1 = low similarity

DeClassifier: Class-Inheritance Inference Engine 
for Optimized C++ Binaries

Techniques
●VTable accumulation and grouping:Primary and secondary
VTables of a class are grouped together.
●Destructor-Constructor analysis: We combine constructor (ctor)
and destructor (dtor) analysis for optimal recovery. Destructors
tend to be retained in the binary, even in the face of optimization.
●Object Layout Analysis (OLA): When neither dtor nor ctor is
present for a given class, we do OLA to identify characteristics
of an object useful for reasoning about direction of inheritance
●Overwrite Analysis: The vptr of a base class gets overwritten
by that of its derived class. We identify these relationships and
assign direction of inheritance using results from OLA.

Existing binary level class hierarchy recovery tools such as
Marx, VCI, SmartDec e.t.c fail in one or more of the following:
● Poor recovery rate in the presence of optimization
● Ignore direction of inheritance
● Inability to differentiate inheritance from composition

To address these problems, we present DeClassifier.

Results

Table 2: Precision and recall of class hierarchy recovered by DeClassifier from binaries
compiled with O2 optimization

Devil is Virtual: Reversing Virtual Inheritance in
C++ Binaries

Prior solutions have focused on recovering single and multiple
inheritance and on harnessing them to enforce CFI policies,
while ignoring virtual inheritance (VH). However, our study
shows that VH is not uncommon. We found 11% of libraries
(including libstdc++) and 2% of executables to contain VH. We
also identified security implications of ignoring VH.

Security Implication
The presence of virtual inheritance introduces additional
structures, one of which is the construction VTable (CV).
Defenses such as Marx do not differentiate between a CV and a
regular VTable. However, using a CV instead of a regular
VTable will result in object out of bounds access. The equation
below gives the number of CV in a binary at depth n of virtual
inheritance:

Figure 1: Overview of VirtAnalyzer

We built VirtAnalyzer to recover virtual inheritance from
binaries with high precision and accuracy. Figure 1 shows an
overview of VirtAnalyzer. Our evaluation shows that
VirtAnalyzer can recover up to 100% of virtual bases and
95.5% of intermediate bases.

Our Solution

References
1.On Design Inference from Binaries Compiled using Modern
C++ Defenses. RAID’19
2.DeClassifier: Class-Inheritance Inference Engine for Optimized
C++ Binaries. AsiaCCS’19

mailto:rerinfo1@binghamton.edu

