eUseful for enforcing CFI policies on binaries.
eSource code based defenses reveal design
information. May not be attractive to vendors.
Consumers have to rely on binary level solutions
for security.

eSource code may be unavailable to implement
source code base CFI defenses.

e Useful for program understanding.

o All modern C++ defenses either explicitly embed
design information into the binary,
e.g FCFI & Shrinkwrap, SafeDispatch,
TypeSan (TS), CaVer (CV) and Hextype.
oOr implicitly embed,
e.g OVT, VTrust, VIP.
eoThese defenses reveal a significant aspect of
design with vendors do not necessarily want to

make public. Results

Program FCFI | OVT TS cvVv
Spidermonkey | 033 | 035 | - [038
Xalanc 0.02 0.23 0.15 0.43
Soplex 0.05 0.07 | 0.13 0.18
Povray 0.1 0.33 0.11 0.45
Omnetpp 0 0.21 0.1 0.32
Dealll 0.12 - 0.16 0.86
Namd 0 1 0 0
CplusplusThread| 0.09 0 0.2

able 1: Graph edit distance (GED) of class hierarchy graph recovere

Existing binary level class hierarchy recovery tools such as
Marx, VCI, SmartDec e.t.c fail in one or more of the following:

. Poor recovery rate in the presence of optimization

) Ignore direction of inheritance

° Inability to differentiate inheritance from composition
To address these problems, we present DeClassifier.

Techniques
eVTable accumulation and grouping:Primary and secondary
VTables of a class are grouped together.
e Destructor-Constructor analysis: We combine constructor (ctor)
and destructor (dtor) analysis for optimal recovery. Destructors
tend to be retained in the binary, even in the face of optimization.
eObject Layout Analysis (OLA): When neither dtor nor ctor is
present for a given class, we do OLA to identify characteristics
of an object useful for reasoning about direction of inheritance
eOverwrite Analysis: The vptr of a base class gets overwritten
by that of its derived class. We identify these relationships and
assign direction of inheritance using results from OLA.
esults

Program #Classes #Edges Ctor only Ctor + Dtor Ctor + Dtor + OLA
GT Binary | GT Used | P(%) R(%) | P(%) R(%) | P(%) R(%)
libebml 27 26 22 22 100.0 546 | 100.0 864 | 1000 86.4
libflac 18 18 10 10 100.0 30.0 100.0 100.0 | 100.0 100.0
libzmq 76 64 76 53 100.0 604 | 97.8 755 | 1000 79.3
libwx_baseu 285 262 264 198 100.0 141 100.0 43.9 100.0 47.5
libwx_baseu_net | 44 43 19 17 100.0 353 | 929 765 | 1000 82.4
libwx_gtk2u_adv 266 229 118 83 100.0 18.1 88.2 18.1 91.4 38.6
libwx_gtk2u_aui | 62 59 11 11 500 111 | 500 11.1 | 80.0 44.4
libwx_gtk2_core | 683 621 481 293 | 951 133 | 947 304 | 938 614
libwx_gtk2u_html | 138 123 74 36 100.0 139 | 889 444 | 895 47.2
libwx_gtk2u_xre | 122 102 12 - 0.0 0.0 |00 0.0 0.0 0.0
Average 845 251 | 81.3 48.6 | 854 584
Doxygen 974 870 866 469 | 100.0 3.0 | 682 576 | 947 80.2
Xalanc 975 875 710 577 | 100.0 454 | 787 653 | 983 79.4
Dealll 874 687 854 678 | 984 186 | 991 801 | 984 819
Omnetpp 112 105 102 97 100.0 227 100.0 58.8 98.7 78.4
Soplex 29 25 22 12 1000 83 | 667 167 | 1000 50.0
Povray 32 24 21 12 100.0 23.1 100.0 583 100.0 58.3
Average 99.7 202 | 855 56.1 | 984 714

from binaries compiled with different compiler based defenses. GED close Table 2: Precision and recall of class hierarchy recovered by DeClassifier from binaries

to 0 = high similarity, close to 1 = low similarity

compiled with O2 optimization

Prior solutions have focused on recovering single and multiple
inheritance and on harnessing them to enforce CFI policies,
while ignoring virtual inheritance (VH). However, our study
shows that VH is not uncommon. We found 11% of libraries
(including libstdc++) and 2% of executables to contain VH. We
also identified security implications of ignoring VH.

Security Implication
The presence of virtual inheritance introduces additional
structures, one of which is the construction VTable (CV).
Defenses such as Marx do not differentiate between a CV and a
regular VTable. However, using a CV instead of a regular
VTable will result in object out of bounds access. The equation
below gives the number of CV in a binary at depth n of virtual
inheritance:
Sn+1)-1= w —1 — 0O(n?) (1)

Our Solution

We built VirtAnalyzer to recover virtual inheritance from
binaries with high precision and accuracy. Figure 1 shows an
overview of VirtAnalyzer. Our evaluation shows that
VirtAnalyzer can recover up to 100% of virtual bases and
95.5% of intermediate bases

[2

Identify Identify Group Extract
VTTs SubVTTs vBaseOffsets

VTables
Map
Identify parse CVTablesto | Phase1
Ctors-Dtors Ctors-Dtors
VTables

Recover
virtual bases

(=

Recover
intermediate Phase2
bases

Figure 1: Overview of VirtAnalyzer

References

1.0n Design Inference from Binaries Compiled using Modern
C++ Defenses. RAID’19

2.DeClassifier: Class-Inheritance Inference Engine for Optimized
C++ Binaries. AsiaCCS’19

mailto:rerinfo1@binghamton.edu

